基于MATLAB的某特种车转向轮四连杆机构设计
- 格式:pdf
- 大小:1.14 MB
- 文档页数:4
基于matlab的四杆机构运动分析一、四杆机构基本概念四杆机构是一种通过变换连杆长度,改变机构运动形态的机械系统。
四杆机构通常由固定连杆、推动连杆、连接杆和工作连杆四个连杆组成,其中固定连杆和推动连杆固定不动,连接杆和工作连杆则沿固定轴线的方向做平动或旋转运动。
四杆机构的基本构造如下图所示:四杆机构的四个连杆的长度和构造参数,以及驱动机构的运动决定了机构的运动特性。
在进行四杆机构运动分析时,需要通过求解运动学关系式和动力学方程,得到连杆的运动规律和力学特性。
二、四杆机构运动学分析1.运动学基本方程四杆机构的运动学分析基本方程是连杆长度变化的定理,即:l₁²+l₂²-2l₁l₂cosθ₂=l₃²+l₄²-2l₃l₄cosθ₄其中,l₁,l₂分别为固定连杆和推动连杆长度;l₃,l₄分别为连接杆和工作连杆长度;θ₂,θ₄分别为推动连杆和工作连杆的夹角。
2.运动学求解方法根据四杆机构运动学基本方程,可以求解机构中任意连杆的角度和位置,从而分析机构运动规律。
在matlab程序中,运动分析可以采用分析法或图解法。
分析法通常采用向量法或坐标法,即将四杆机构中各连杆和运动副的运动量表示为向量或坐标,然后根据连杆长度变化的定理,求解四个未知角度θ₁、θ₂、θ₃、θ₄。
图解法则先通过画图确定机构的运动规律,在图上求解连杆的角度。
比如可以采用伯格(Bourgeois)图法或恰普利恩(Chaplygin)图法等。
四杆机构动力学分析基本方程包括平衡方程和力平衡方程。
平衡方程:当四杆机构处于平衡状态时,连杆的受力关系可以表示为:ΣF=0其中ΣF为各连杆受力的合力。
ΣF=m×a其中,m为每个连杆的质量,a为连杆的加速度。
四杆机构动力学求解方法以matlab为工具,可借助matlab的求解器完成求解。
具体可以利用matlab的优化工具箱、控制工具箱和系统动态学工具箱等,来实现机构模型的动态模拟、仿真和优化设计。
基于matlab的连杆机构设计————————————————————————————————作者: ————————————————————————————————日期:目录1平面连杆机构的运动分析 (1)1.2 机构的工作原理 (1)1.3机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程...................................................11.3.2求解方法.....................................................................22基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计……………………………………………………………………………………………113.2代码设计……………………………………………………………………………………………124 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
基于MATLAB的四连杆机构运动分析软件设计开题报告云南农业大学本科生毕业设计开题报告工程技术学院车辆工程专业( 工科) 2008级设计题目:基于MATLAB的四连杆机构运动分析软件设计人机交互界面的设计云南农业大学教务处制2011年10月8日云南农业大学毕业设计开题报告1(本课题所涉及的问题在国内(外)的研究现状综述目前,MATLAB软件是功能强大的科学计算软件,被国内外高校和科研单位所使用。
尤其是基于矩阵运算的数据处理,还可用符号运算计算解析解;还可以实现数值分析、图像处理等若干个领域的计算和图形显示功能。
在工程技术界,MATLAB 也被用来解决一些实际课题和数学模型问题。
典型的应用包括数值计算、算法预设计与验证,以及一些特殊的矩阵计算应用,如自动控制理论、统计、数字信号处理(时间序列分拆)等。
平面连杆机构是一种应用十分广泛的机构。
对它的分析及设计一直是机构学研究的一个重要课题。
但传统方法对于常见的连杆机构的运动学、动力学分析仍然是非常繁琐,以至于很难对它进行深入的研究,如果建立一个连杆机构的仿真系统,使设计人员在进行设计时,从复杂的机构分析和烦琐的计算中摆脱出来,集中精力从事于创新工作,那将是很有意义的。
基于这样一种考虑,本课题尝试建立一个平面连杆机构的运动学仿真系统。
应用Matlab/Simulink对机构领域中应用广泛的基本机构——双曲柄机构、曲柄摇杆机构、曲柄滑块机构等的连杆点轨迹作仿真,该方法编程工作量小、轨迹图形显示便捷,所建模型只需作少量更改即可适应四杆机构的不同特征值,并可推广至多杆机构情况。
建立四杆机构的优化设计模型,用 MATLAB 优化工具箱实现四杆机构的优化设计及仿真,得到的优化结果有足够的精度,能满足设计需求,同时表明MATLAB 优化工具箱在四杆机构优化设计及其相关问题中具有较好的应用前景。
2(本人对课题提出的任务要求及实现预期目标的可行性分析由于连杆机构的性能受机构上繁多的几何参数的影响,呈复杂的非线性关系,无论从性能分析上还是性能综合上都是一个比较困难的工作。
作者简介:黄鹤辉(1947-),男,广西宜州市人,广西工学院副教授。
收稿日期:2002-12-17基于M A TLAB 的四杆变幅机构结构参数分析黄鹤辉,陈 晨(广西工学院机械工程系,广西柳州 545006)摘要:本文介绍利用M A TLAB [1]数值计算和数据可视化功能对门座式起重机四杆变幅机构结构参数进行分析,各参数变化时对运动规律的影响。
关键词:门座式起重机;四杆变幅机构;结构分析中图分类号:TB 11 文献标识码:A :1004-2148(2003)01-0029-04引言 四杆变幅机构是门座式起重机应用最广泛的一种装置。
它的设计要求是:在变幅过程中由物品引起的臂架力矩要尽量地小,变幅轨迹的最大铅垂落差要尽量地小,速度要均匀,机构重量要轻等。
由于四杆变幅机构结构参数较多,用一般的解析法或图解法很难分析其运动规律。
本文介绍利用M A TLAB 强大的数值计算功能和数据可视化功能,当初步选定某一结构方案后,计算臂架一定转角范围内象鼻梁端点(起吊点)的轨迹坐标和臂架力矩值并绘制曲线,并在其它参数确定的情况下将某一参数在一定范围内取不同值绘制轨迹曲线和力矩曲线,分析各参数对轨迹、力矩曲线的影响规律,为合理确定各参数提供直观、可靠的依据。
在此基础上,也可借助M A TLAB 优化工具箱的函数进行优化计算[2],最后再次将优化结果绘制曲线验证。
由于M A TALB 语言书写简洁,且无须设计者进行复杂的优化计算基础编程工作,易于在实际设计工作中推广应用。
1 四杆变幅机构运动分析[3] 四杆变幅机构结构简图如图1所示。
图中S m ax ,S m in —机构最大、最小的变幅值: h —起升高度;(x ,y )—象鼻梁E 点坐标;(x 0,y 0)—拉杆固定支点B 0的坐标;l 0—A 0B 0间的长度;l 0—臂架A 0D 的长度;l 2—象鼻梁后臂DB 的长度;l 3—拉杆B 0B 的长度;l 4—象鼻梁前臂D E 的长度;图1 四杆变幅机构Η—象鼻梁前后臂之间的夹角;Α—臂架的摆角;Β—拉杆的摆角;Υ—象鼻梁前臂与x 轴的夹角。
基于matlab的平面四连杆机构设计以及该机构的运动仿真分析摘要四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意义。
传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。
随着计算机辅助数值解法的发展,特别是MATLAB软件的引入,解析法已经得到了广泛的应用。
对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。
在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB中编程可以求得其他杆件的长度。
针对范例中所求得的各连杆的长度,我们在proe软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出CB,的角加速度的变化,从而得到CB,两接触处所受到的力是成周期性变化的,可以看出CB,两点处的疲劳断裂,我们提B,两点处极易疲劳断裂,针对C出了在设计四连杆中的一些建议。
关键字:解析法 MATLAB 软件 proe 软件 运动仿真建立用解析法设计平面四杆机构模型对于问题中所给出的连架杆AB 的三个位置与连架杆CD 的三个位置相对应,即三组对应位置为:332211,,,,,ψϕψϕψϕ,其中他们对应的值分别为: 52,45,82,90,112,135,为了便于写代数式,可作出AB 与CD 对应的关系,其图如下:图—2 AB 与CD 三个位置对应的关系通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下:φααi θi φi图—3 平面机构直角坐标系通过建立直角坐标系OXY ,如上图所示,其中0α与0φ为AB 杆与CD 杆的初始角,各杆件的长度分别用矢量d c b a ,,,,表示,将各矢量分别在X 轴与Y 轴上投影的方程为⎩⎨⎧=++=+)sin(*)sin(*)sin(*)cos(*)cos(*)cos(*φθαφθαc b a c d b a在上述的方程中我们可以消除θ,从而可以得到α与φ之间的关系如下:)cos(2)cos(2)cos(2)(2222αφαφab ac cd b d c a +-=+-++ (1) 为便于化简以及matlab 编程我们可以令:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-++=c d H a d H ac b d c a H 32222212 (2) 通过将(2)式代入(1)式中则可以化简得到如下等式: )cos()cos()cos(321αφαφH H H +-=+ (3)我们可以通过(3)式将两连架杆对应的位置带入(3)式中,我们可以得到如下方程:⎪⎩⎪⎨⎧+-=++-=++-=+)cos()cos()cos()cos()cos()cos()cos()cos()cos(333332123222211311121ϕψϕψϕψϕψϕψϕψH H H H H H H H H (4) 联立(4)方程组我们可以求得321,,H H H ,再根据(2)中的条件以及所给定的机架d 的长度,我们可以求出其它杆件的长度为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++===1222322acH d c a b H d c H d a (5)四连杆设计范例:在日常生活中,我们经常看到消防门总能自动关上,其实它是利用四连杆机构与弹簧组成的。
文章编号: 1009-3818(2002)02-0047-03基于MATLAB 软件的铰链四杆机构运动分析仿真软件开发覃虹桥1 魏承辉2 罗佑新2(1华中科技大学材料学院 湖北武汉430074)(2常德师范学院机械工程系 湖南常德415003)摘 要: 建立了铰链四杆机构运动分析的数学模型,以MATLAB 程序设计语言为平台,将参数化设计与交互式相结合,设计了铰链四杆机构仿真软件,该软件具有方便用户的良好界面,并给出界面设计程序,从而使机构分析更加方便、快捷、直观和形象.设计者只需输入参数就可得到仿真结果,再将运行结果与设计要求相比较,对怎样修改设计做出决策.它为四杆机构设计提供了一种实用的软件与方法.关键词: 铰链四杆机构;按钮;界面;仿真中图分类号: TH 311.52;TH 113.2+2 文献标识码: A铰链四杆机构的运动学分析是机构学中典型的机构运动分析之一,如果设计铰链四杆机构时能及时图示其运动轨迹和速度分析,从而将图示结果与设计要求相比较,可以及时修改设计中的偏差.目前,MALTAB 已经不再是/矩阵实验室0,而成为国际上最流行的科学与工程计算的软件工具,以及一种具有广泛应用前景的全新的计算机高级编程语言,它在国内外高校和科研部门正扮演着越来越重要的角色,功能也越来越大,不断适应新的要求提出新的解决办法.可以预见,在科学运算与科学绘图领域,MATLAB 语言将长期保持其独一无二的地位.然而,国内至今尚未见到采用MATLAB 开发的有关机构学的软件,笔者以MATLAB 的科学运算与绘图的强大功能开发了铰链机构运动仿真软件.1 铰链四杆机构运动轨迹仿真软件1.1 程序功能与数学模型1)程序功能 本程序可以进行铰链四杆机构的运动分析及位置求解.用户在铰链四杆机构运动分收稿日期:2002-12-10基金项目:湖南省教育厅科研资助项目(00C289)第一作者:覃虹桥(1959-)男高级工程师研究方向:机械设计制造析仿真软件里输入各种参数,即可自动演示不同的铰链四杆机构(曲柄摇杆机构、双曲柄机构、双摇杆机构)的运动.2)数学模型 已知AB=a ,BC =b ,C D =c ,AD=d .AB 为主动杆,以匀角速度逆时针旋转,AD 为机架,见图1.图1 铰链四杆机构运动简图Fig.1 plame four-linkage motion diagram分析:求B C 的运动轨迹,可找B 、C 两点坐标与转动角度51的关系,然后求51+d 51及B 、C 两点的坐标,即可求出运动轨迹.由图1有矢量方程:AB +BC =AD +DC ,则其分量方程为:a c os 51+b cos 52=d +c cos 53(1)a sin 51+b sin 52=c sin 53(2)将式(1)、(2)联立消去52并整理得:a 2+c 2+d 2-b 22ac +d c os 53a -d cos 51c -cos (51-53)=0(3)再改写为:sin 51sin 53+(cos 51-da)cos 53+a 2+c 2+d 2-b 22ac -d c os 51c=0(4)令r 1=sin 51,r 2=cos 51-d a ,r 2222第14卷第2期常德师范学院学报(自然科学版)Vol.14No.22002年6月Journal of Changde Teachers University(Natural Science Edition)Jun.2002则(4)化为:r 1sin 53+r 2cos 53=r 3(5)由三角恒等式求得:53=2arctg r 1?r 21+r 22-r 23r 2+r 3(6)式(6)两个解对应于机构的两种不同装配形式./+0对应于图1的实线,而/-0对应于图1的虚线.B 点坐标:B x =A x +a cos 51,B y =A y +a sin 51C 点坐示:C x =D x +c cos 53,C y =D y +a sin 53从运动杆的转角53,对时间求导可得DC 的角速度,由式(1)、(2)解出52按速度合成可求得BC 的转动角速度[2].1.2 程序框图以曲柄摇杆机构的运动仿真程度为例,程序框图如下:图2 程序框图Fig.2 Programming frame diagram1.3 程序代码采用MATLAB 开发图形界面,程序如下:%fourlinkages.mh_main=figure(.Units .,.normalized .,.Position .,[.3,.3,.5,.5],,.MenuBar .,.none .,.Name .,.四杆机构仿真.,.Number Title .,,.off .,.Resize .,.off .);h_axis=axes(.Units .,.normalized .,.Position .,[.12,.15,.6,.6],,.Tag .,.axPlot .,.Visible .,.on .,.XLim .,[-50,80<,.YLim .,-60,80]);h_text1=uicontrol (.Style .,.Text .,.Tag .,.myText1.,.Units .,,.normalized .,.Position .,[0.78,0.55,.05,.38],.String .,,.输入已知参数.,,.HorizontalAlignment .,.right .);h_te xt2=uicontrol(.Style .,.Text .,.Tag .,.myText2.,.Units .,,.nor malized .,.Position .,[0.15,0.90,.35,0.05],.String .,,.正在仿真,,OK !.,,.HorizontalAlignment .,.right .);a =20;b =50;c =40;d =50;fai =60;four_linkages0(a,b ,c,fai );%初始化图形h_edit1=uicontrol(.Style .,.Edit .,.Tag .,.myEdit1.,.Units .,,.normalized .,.Position .,[0.86,.85,.10,.1],.String .,.20.,,.HorizontalAlignment .,.right .);h_edit2=uicontrol(.Style .,.Edit .,.Tag .,.myEdit2.,.Units .,,.normalized .,.Position .,[0.86,.75,.10,.1],.String .,.50.,,.HorizontalAlignment .,.right .);h_edit3=uicontrol(.Style .,.Edit .,.Tag .,.myEdit3.,.Units .,,.normalized .,.Position .,[0.86,.65,.10,.1],.String .,.40.,,.HorizontalAlignment .,.right .);h_edit4=uicontrol(.Style .,.Edit .,.Tag .,.myEdit4.,.Units .,,.normalized .,.Position .,[0.86,.55,.10,.1],.String .,.60.,,.HorizontalAlignment .,.right .);h_list=uic ontrol(.Style .,.ListBox .,.Tag .,.myList .,.Units .,,.normalized .,.Position .,[0.78,.35,.20,.15],.String .,.正置|反置.,,.HorizontalAlignment .,.right .,.Value .,1);k=1;h_button1=uicontrol(.Style .,.PushButton .,.Units .,,.normalized .,.Position .,[0.78,.25,.2,.1],.String .,,.运动轨迹仿真.,.CallBack .,,.hd1=findobj(gcf,..Tag ..,..myEdit1..);.,,.a =eval(get(hd1,..String ..));.,,.hd2=findobj(gcf,..Tag ..,..myEdit2..);.,,.b =eval(get(hd2,..String ..));.,,.hd3=findobj(gcf,..Tag ..,..myEdit3..);.,,.c =eval(get(hd3,..String ..));.,,.hd4=findobj(gcf,..Tag ..,..myEdit4..);.,,.d =eval(get(hd4,..String ..));.,,48常德师范学院学报(自然科学版)2002年.kk =get(findobj(gcf,..Ta g ..,..myList ..),..Value ..);.,,.four_linkages(a,b,c,d,kk ).]);%调用回调函数轨迹仿真.h_button2=uicontrol(.Style .,.PushButton .,.Units .,,.normalized .,.Position .,[0.78,.15,.2,.1],.String .,,.角速度分析.,.CallBack .,.four_linkages1(a,b,c,d ,kk ).);h_button3=uicontrol(.Style .,.PushButton .,.Units .,,.normalized .,.Position .,[0.78,.05,.2,.1],,.String .,.退出.,.CallBack .,.four_linkages2.);%调用回调函数退出系统在主程序中有3个回调函数和一个初始化函数,回调函数分别用轨迹仿真、运动分析和退出系统.回调函数程序按前述数学模型编程(程序略);初始化函数用程序运行时初始化界面的图形.运行程序产生以下界面(图3).图3 程序运行界面Fi g.3 Programming Interface在界面中输入已知参数,则可生成相应的图形.当输入a =20,b =50,c =40,d =60,装配形式选取正置时,如果选运动轨迹仿真,则得仿真轨迹(图4);如果装配形式选反置,进行轨迹仿真(图5).(注:图4 运动轨迹仿真(装配形式正置)Fi g.4 Moti on track simulation(positiveset)图5 运动轨迹仿真(装配形式为反置)Fig.5 Motion track simulation (in reverse positive set)在图4、5中为节省篇幅,这两个图形只选了对应图3的图形部分,界面的其它部分未剪取.).而当选取装配形式进行轨迹仿真后,可再选角速度分析,得到连杆与摇杆的角速度图形(略).2 结论1)自动演示不同的四杆机构的运动,模拟仿真运动轨迹与从动件的速度分析,有助于分析机构的速度、加速程度和机构的工作性能;2)采用MATLAB 语言开发机构仿真运动分析软件,开发界面容易,运行程序时无需编辑、连接,给使用者以极大的方便.只要输入数据,即可得到结果.将运行结果与设计要求相比较,从而引导设计者修改设计.参 考 文 献1 薛定宇.科学运算程序MATLAB5.3程序设计与应用[M ].北京:清华大学出版社,2000.2 孟宪源.现代机构手册(上)[M].北京:机械工业出版社,1994.3 王沫然.Si mulink4建模及动态仿真[M].北京:电子工业出版社,2002.THE DEVELOPMENT OF EMULATIONAL SOFTWARE FOR ANALYSIS OF MOTION IN PLANE GEMEL FOUR -LINKAGEBASED ON MATLAB SOFTWAREQING Hong -qiao 1 WEI CH eng -hui 2LU O You -xin 2(1T he material institute,Cen tral China University of Science and T echnology,Wuhan Hubei,430074)(2Department of Mechanical Engineering,Changde Teachers University,Changde Hunan 415003)Abstract A mathematical model of motion analysis was estab -lished in plane four-linkage,and emulational software was deve-loped .The software adop ted Matlab5.3.1as a desi gn language.It combined parametric design with interactive design and had good in -terface for user.Thus,i t was fas ter and more convenient to analyse linkage.The emulational result was obtained as soon as input param -eters was imported and the devisers can make decision-making of modification by the comparing emulational result with design de -mand.It provides an applied software and method for linkage.Key words Gemel Four -Linkage;button;interface;emula -tion(责任编校:谭长贵)49第2期覃虹桥 魏承辉 罗佑新 基于MATLAB 软件的铰链四杆机构运动分析仿真软件开发。
第14卷第2期2019年6月Vol.14No.2Jun.2019陕西工业职业技术学院学报Journal of Shaanxi Polytechnic Institute基于MATLAB给定连杆预定位置的四杆机构设计韩二豹(陕西工业职业技术学院土木工程学院,陕西咸阳712000)摘要:连杆机构是一种典型的机械机构,运动设计是一个比较复杂和困难的问题,给定连杆预定位置的四杆机构的设计常用的设计方法主要为解析法。
本文以MATLAB语言为基础,利用计算机对给定连杆预定位置的四杆机构进行设计。
结果表明,此方法设计过程简洁,结果合理,准确,效率高。
关键词:四杆机构;MATLAB;预定位置中图分类号:TB121文献标识码:A文章编号=9459-2019(2)-0006-03A MATLAB-based Design of Four-bar Linkage with PresetPosition of Connecting RodHan Erbao(School of Civil Engineering,Shaanxi Polytechnic Institute,Xianyang Shaanxi712000,China)Abstract:Connecting rod is a typical mechanical linkage and its motion design is complex and ually, analytical method is the main method used in the design of four一bar linkage with preset position of connecting rod. In the study,a MATLAB一based design of four bar mechanism was made to link the preset position given by com・puter.The results show that the design process is simple Key words:Four bar linkage;MATLAB;Preset positiono引言MATLAB是一种高级技术语言和发展环境,特提供了一个人机交互的系统环境,并以矩阵作为基础的数据结构,节省编程时间,语法简单、容易掌握、调试方便,可以设置调试断点、快速查找程序错误等优点,可以将使用者从繁重重复的计算中解脱出来,已经被大家认可和广泛使用,充分展现其高效、直观、简单的特点⑷。
MATLAB 解题1.设有如图所示四杆机构,其中→R 4为机架(常矢),→R1为主动杆,→R3为从动杆,→R 2为连杆。
设在某一工作位置时各杆的角速度和角加速度分别取如下值:ω1=20 rad/s, ε1= 0;ω2=8.5 rad/s, ε2=-10 rad /s 2;ω3=13 rad/s, ε3=-160rad /s 2.试根据上述要求确定该机构尺寸比。
根据图(2),回路闭合方程可写为:→R 1 +→R 2 +→R 3=-→R 4 回路闭合方程对时间求导一次,利用(6)式,可得: 图2 ω1→R 1 +ω2→R 2 +ω3→R 3 = 0回路闭合方程对时间求导两次,利用(7)式,可得c 1→R 1 + c 2 →R 2 + c 3→R 3 = 0其中 c 1=ε1+j ω12 , c 2=ε2+j ω22, c 3=ε3+j ω32解关于→R 1 ,→R 2 和→R 3的线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→→→001111321321321R R R c c c ωωω→R 4 (13) 可得 →R 1=DDx →R 4, →R 2=DDy →R 4 , →R 3=DDz →R 4注意到上述解中含有相同的分母D,它是一个复数,不妨记为D =k<j α|,被它除的效果是把各杆的长度都缩小k 倍,同时方向都顺时针旋转α角,相当于机构不动,坐标轴逆时针旋转α角。
设计机构时,重要的是机构的形状与尺寸比例。
基于这种考虑,可设→R 4 / D =1,则有→R 1=D x =32320111c c ωω-=1230-j497.3 ; →R 2= D y =311030111c c ωω-=-3200-j1820 ; →R 3= D z =001112121c c ωω-=200+j1955 . 于是:→R 4 = -(→R 1 +→R 2+→R 3) = 1770+j362.3在坐标系上作出上述各杆矢量图,根据各杆矢量图作出机构的闭合矢量图,再根据实际需要选定某一杆长度,其它各杆长度按图比例相似放大。
1 2张德坤 李立顺 孟祥德2ZHAND De-kun et al1. 军事交通学院研究生管理大队 天津 3001612. 军事交通学院汽车工程系特种车教研室 天津 300161中图分类号:U463.45.02 文献标识码:A 文章编号: 1004-0226(2011)07-0064-041 前言为使某特种车辆实现其设计功能,拟采用全轮独立转向,各转向轮转向机构设计为四连杆机构,主要由液压缸支座、液压缸、推杆、车轮、支架、转向轴、回转支承、转向臂支座、转向臂等组成,其结构如图1所示。
其中液压缸与液压缸支座、液压缸与推杆及转向臂、推杆与回转支撑、转向臂与转向臂支座均为铰链连接,回转支撑与转向轴为花键连接,转向轴与支架为轴承连接。
其工作原理是通过液压缸伸缩,推动转向臂绕转向臂支座转动,驱动推杆推动回转支承带动转向轴转动,从而实现转向轮转向。
四杆机构的设计通常使用作图法与实验法,这两种方法简单易行,但误差较大。
若运用解析法,能够获得所要求的精度,但因用人工进行,整个设计过程非常繁琐、冗长,甚至可能最终无法完成。
采用MATLAB 优化工具箱对四杆机构进行设计,不仅参数输入简单,编程工作量小,而且可更快捷准确地达到设计要求。
图1 单个转向轮3D 图1. 液压缸支座2. 液压缸3. 推杆4. 车轮5. 支架6. 转向轴7. 回转支承8. 转向臂支座9. 转向臂2 基于MATLAB进行机构设计MATLAB 优化工具箱有许多常用的优化算法,其函数表达简洁,优化算法选择灵活,参数设置自由,集数值计算、符号运算、可视化建模、仿真和图形处理等多种功能于一体,被广泛应用于机械设计、自动控制和数理统计等工程领域。
用MATLAB 优[1]化工具箱解决工程实际问题主要步骤如下:a. 根据所提出的问题建立最优化问题的数学模型,确定变量,列出约束条件和目标函数;b. 分析建立的数学模型,选择合适的最优化方法,调用相应的优化工具箱函数;c. 完成计算,分析结果。
2.1 确定设计变量简化四连杆机构,如图2所示。
取OC 方向为X 轴正方向,建立第一作者:生,硕士研究生,研究方向:车辆工程。
张德坤,男,1983年基于MATLAB的某特种车转向轮四连杆机构设计Design of Four-bar Mechanism of a Special Purpose Vehicle Steering Wheel Based on MATLAB摘 要:基于MATLAB 对某全轮独立转向特种车辆的转向轮四连杆机构进行了设计,并依据设计结果分析了相关参数的运动轨迹,验证了设计结果的合理性。
该方法集设计与优化于一体,简化了四连杆机构的设计过程。
关键词:独立转向 四连杆机构 优化设计Abstract Four-bar mechanism parameters of a special purpose vehicle steering wheel had confirmed by optimization toolbox of MATLAB. The application result shows that the method combine design and optimization and can simplify the design process.Key words independent steering; four-bar mechanism; optimal design坐标系XOY ,OA ,AB ,BC 各杆长分别为L 、L 、L ,点C 的坐OA AB BC 标为(C ,0),点D 的坐标为(D ,D ),沿逆时针方向设定OA 的转角x y 为α,BC 转角为β,最小传动角为γ。
根据设计要求,假定L =0.16 OA m ,液压缸BD 的长度是变化的,设计最小安装长度为0.02 m 。
取设计变量:X ={x ,x ,x ,x ,x }={L L ,C ,D ,D }12345AB BC x x y 2.2 建立目标函数假设液压缸对转向臂ABC 的力为F ,杆AB 对杆OA 、转向臂BD BC 的力是F ,杆OA 所承受的阻力矩为M ,e 、e 、e 分别为F 对AB 123BD C 点,F 对C 点,F 对O 点的力臂。
AB AB 对转向机构而言,在满足基本设计要求条件下,机构越省力[2]越好,即克服一定转向阻力所需的油缸推力越小越好,所以定义传力比K ,表示单位液压缸力所能克服的转向阻力,公式为:1/K =F /MBD 式中,K 为该机构的传力比,表示单位液压缸力所能克服的转向阻力,可以看出K 值越大越好。
在一定的液压缸推力下,K 值越大,克服的转向阻力越大;或者在一定的转向阻力下,K 值越大,所需的液压缸推力越小。
当液压油缸伸长长度L 为某一值时,对机构进行受力分析可BD 知:x , 即:1/K F /M = e/e·eB D213(1)为满足该装备转向系统要求,防止出现死点和运动干涉,应满足:a. OA 、OB 共线时BD 距离L 不小于液压缸最小安装长度;BDb.该四连杆机构为曲柄摇杆机构,OA 为最短杆,BC 为最长杆;[3]c.角度的极大值出现在OA 、OB 重叠共线时(如图2所示)。
基于假设222cos()=[(x + 0.16)+x -x ]/[2x (0.16+x )]013231222cos()=[(x - 0.16)+x -x ]/[2x (x - 0.16)]max 13231∆=-max 0222cos()=[(x + 0.16)+x -x ]/[2x (x +0.16)]min112321222cos()=[(x - 0.16)+x -x ]/[2x (x - 0.16)]min212321r =min(,)min min1min2B =(x +0.16)cos() +x x 0103B =(x +0.16)sin()+x y 0103= ()ααααααγγγγαα当油缸长度L 为BD 时:BD i tan = x / (x - x )1 5 4 3βe =S / BD 1△i e =S / x 2△ABC 1e =S / x 3△AOB 1式中,和分别为OA 逆时针转角的最小和最大值;Δ为0max OA 可转角;为OB 与X 轴正方向夹角;为OB 与OA 夹角;为121CD 与X 轴正方向夹角;为CD 与CB 夹角;B 、B 、B 、B 分2x 0y 0x 1y 2别为B 点在转角为和时的横、纵坐标;S 、S 、0max △BCD △ABC S 分别表示△BCD 、△ABC 、△AOB 的面积。
如图2所示。
△AOB 综上所述,建立目标函数:F (X )= max( BD S / S S ) (2)i △ABC △BCD △AOB BCD ααααααββααm =(x +BD +CD )/22i n =(x +x +AC )/212l =(0.16+x +OB )/212.3 设定约束条件在此设计中,为满足该装备转向系统的设计要求,转向机构应满足以下约束。
2.3.1 边界约束a. 设计变量中的杆长变量大于零,两固定点的坐标也大于零,即:x > 0(i =1,2345)。
i b. 设计变量中C 、D 两点的坐标表明了转向机构在车架布置中的位置,为使C 、D 两点的位置满足总体布置要求,并不与车架发生运动干涉,限制其取值的上下界,即:,,,,B =(x -0.16)sin(-π)y 11max α222cos()=(OB +x -x /2x OB 1323222cos()=(OB +0.16-x )/0.32OB 21 = +12ααααα)0.1 < x < 1 (i =345) i X ≤ min(x ,x ,x ) 1234X ≥max(x ,x ,x )41232.3.2 性能约束a. 该机构需要使回转支承的转动范围达到±100°,即:Δ ≥200°。
b. 为了提高传动效率,保证连杆机构运动轻巧,在车轮偏[4]转的极限范围内不出现死点,设置最小传动角约束:r ≥40°。
c. 为实现转向轻巧,转向过程中油缸最大阻力F 应在设BD max 4 计可承受范围内,即:F ≤ 8.0×10N 。
BD max 在转向轮的转向过程中,地面作用于车轮的滚动阻力及滑磨阻力对主销轴形成一个阻力矩,称为转向阻力矩。
单个车轮偏转时,单个轮胎通过轮胎与路面接触面的中心,接触面的形状和尺寸与轮胎的机构、表面花纹及胎内气压有关。
粗略计算时,假设接地为直径等于轮胎宽度B 的圆,并假设接触面各点的压强p 相等。
这样,转向阻力矩M 就等于圆形摩擦面对圆心的滑S [5]动摩擦力矩,即其单轮偏转转向阻力矩M 的计算公式为:Z M =·Z ·B/3 (3)Z 式中,为附着系数,取=0.7;B 为轮胎断面宽度,B =0.29 m ;Z 为轮载,取Z =55 000 N 。
max 将各个数据代入公式,计算得该装备最大单轮偏转转向阻力矩M =3 721.67 N ·m 。
Z max 根据式(1)、式(2)可得油缸最大推力为:F = max(M BD S / S S ) (4)BDmax Z max i 4 即设计应满足:max(M BD S / S S )≤8.0×10N Z max i △ABC △BCD △AOB 2.3.3 几何约束各杆长要满足图2所示的几何关系,要保证机构为曲柄摇[4]杆机构,液压缸BD 最小安装长度为0.02 m ,OB'C 、BCD 的几何形状为三角形,设置以下约束:,,min △ABC △BCD △AOB αφφφ2.4 调用程序进行设计根据以上建立的单目标优化数学模型,利用MATLAB 软件调图3 转角与油缸伸缩长度关系图αL BD 图4 传动角与油缸伸缩长度关系图γL BD 用优化工具箱的fmincon 函数进行编程。
运算得到设计结果如表1所示。
3 设计结果分析根据设计结果,作转角、传动角与油缸伸缩长度L 关系BD 图。
αγ3.1 对偏转角的分析如图3所示,杆OA 转过的角度为228°,满足机构要转动±200°的要求,即:Δ≥200°,并且在常用位置保持了良好的αα0.16+x ≤x +x 2130.16+x < x +x 123BD ≥0.02min收稿日期:2011-05-09参考文献[1] 李建霞,王良才.基于matlab 的四杆机构优化设计简介.制造业信息化,2010(1):88-89.[2] 赵静一,安四元,孙炳玉等.基于Matlab 与Ansys 的150 t 重载车转向机构的优化设计[ J ].液压与气动,2010(2):1-3.[3] 高英敏,马璇,张丽萍.双摇杆机构极限摆角的确定[ J ].机械设计,2004(4):51-53.[4] 孙桓,陈作模.机械原理[M ].北京:高等教育出版社,2001.[5] 陈幕忱,陆植.装卸搬运车辆[M ].北京:人民交通出版设,1998.[ J ]收稿日期:2010-04-16图5 油缸推力与油缸伸缩长度关系图L L BD BD 卷帘式后门适用于装料器后框架是直线形或小弧度的曲线形。