运动电荷在磁场中受到的力
- 格式:ppt
- 大小:1.60 MB
- 文档页数:36
运动电荷在磁场中受到的力引言在物理学中,磁场是一种存在于空间中的特殊力场。
而电荷是产生磁场或受到磁场力作用的重要物理量。
当一个电荷在磁场中运动时,它会受到一个力的作用,这就是运动电荷在磁场中受到的力。
本文将详细讨论运动电荷在磁场中受到的力的性质、计算方法等内容。
磁场和磁场力磁场是由具有磁性的物质产生的。
磁场的特点是有方向和强度。
磁场的单位是特斯拉(Tesla),常用符号为T。
常见的磁场来源有恒定磁场和交变磁场。
磁场力是指磁场对电荷或电流产生的力。
在运动电荷场景中,所受力的大小与电荷的速度、磁场强度以及电荷的运动方向有关。
根据洛伦兹力定律,运动电荷在磁场中所受到的力可以用如下公式表示:[ = q( ) ]其中,F为电荷所受到的力,q为电荷量,v为电荷的速度,B为磁场强度。
运动电荷在磁场中受到的力的性质我们可以从公式中看出,运动电荷在磁场中受到的力具有以下几个性质:1. 没有静止电荷的力根据洛伦兹力定律,只有当电荷具有速度时,才会受到磁场力的作用。
当电荷静止时,磁场对它没有任何影响。
2. 力的方向垂直于速度和磁场强度方向根据公式中的向量积,我们可以看出电荷所受到的力方向与电荷的速度方向和磁场强度方向都垂直。
具体而言,力的方向遵循右手定则,即将右手的食指指向电荷的运动方向,中指指向磁场方向,则拇指指向力的方向。
3. 力的大小与速度、电荷量、磁场强度相关根据公式,我们可以看出电荷所受到的力大小与电荷的速度、电荷量以及磁场强度都有关系。
当速度、电荷量或磁场强度增大时,力也会增大。
而当速度、电荷量或磁场强度减小时,力也会减小。
4. 力不会改变电荷的动能在运动电荷受到磁场力作用时,它的动能不会发生改变。
这是因为磁场力的方向始终垂直于速度方向,所以它只会改变电荷的运动方向而不会改变电荷的速度大小。
运动电荷在磁场中受到的力的计算方法为了计算运动电荷在磁场中受到的力,我们需要知道电荷的速度、电荷量和磁场强度。
根据洛伦兹力定律公式,我们可以按照以下步骤进行计算:1. 确定电荷的速度首先,我们需要确定电荷的速度。
运动电荷在磁场中的受力分析在物理学中,我们学习了电荷和磁场的相互作用。
其中,最为经典的案例就是运动电荷在磁场中受力的问题。
本文将对运动电荷在磁场中的受力进行分析。
一、洛伦兹力的定义和计算公式当一个带电粒子以速度v在磁场B中运动时,它将受到洛伦兹力的作用。
洛伦兹力的定义是:当一个电荷e的粒子以速度v进入磁感应强度为B的均匀磁场中运动时,它所受的力F与物理量e、v、B之间的关系是:F = e * (v x B)其中,矢量符号x表示向量叉积。
此公式表明,洛伦兹力的大小等于电荷e和速度v的乘积,并且与速度v和磁感应强度B的夹角有关。
二、洛伦兹力的方向根据洛伦兹力公式可以看出,洛伦兹力是一个矢量,其方向与速度v和磁感应强度B的夹角有关。
具体来说,将速度向量v按照右手法则旋转到磁感应强度B的方向上,右手握住v,大拇指指向v,四指弯曲的方向则为洛伦兹力的方向。
三、运动电荷在磁场中的轨迹根据洛伦兹力的方向和大小,我们可以推断出运动电荷在磁场中的轨迹。
当洛伦兹力与电荷的速度方向垂直时,电荷将绕着磁场线圈形成一个圆周运动。
当洛伦兹力与电荷的速度方向平行时,电荷将继续沿着直线运动。
而当洛伦兹力与电荷的速度方向呈45度夹角时,电荷将绕着一条螺旋线运动。
四、洛伦兹力的应用洛伦兹力在物理学中有着广泛的应用,其中最为重要的应用之一就是电磁感应。
当一个导线中的电流通过时,导线中的电子将以一定的速度运动。
根据洛伦兹力的作用,电流中的电子将受到一个向导线的方向垂直的磁场力。
利用这一原理,我们可以实现电磁感应,例如发电机的原理。
此外,洛伦兹力还可以应用于粒子加速器和核物理实验中。
在粒子加速器中,带电粒子在加速过程中会产生磁场,从而受到洛伦兹力的作用,加速到较高的速度。
而在核物理实验中,利用洛伦兹力可以将带电粒子进行加速、定位和探测。
五、运动电荷在非均匀磁场中的受力分析虽然本文主要讨论了运动电荷在均匀磁场中的受力分析,但实际应用中我们也经常会遇到非均匀磁场的情况。
磁场中的电荷洛伦兹力当我们谈到磁场中的电荷运动时,洛伦兹力是一个无法回避的重要概念。
它不仅在物理学的理论研究中占据着关键的地位,也在各种实际应用中发挥着巨大的作用。
首先,让我们来理解一下什么是洛伦兹力。
简单来说,洛伦兹力是指运动电荷在磁场中所受到的力。
这个力的大小与电荷的电荷量、速度大小、磁场的磁感应强度以及速度方向与磁场方向的夹角有关。
其表达式为:F =qvBsinθ,其中 F 表示洛伦兹力,q 是电荷的电荷量,v 是电荷的速度,B 是磁感应强度,θ 是速度方向与磁场方向的夹角。
想象一下,一个带电粒子在磁场中运动。
如果它的速度方向与磁场方向平行,那么θ等于 0 度,sinθ等于 0,这时候粒子不受洛伦兹力,会做匀速直线运动。
但如果速度方向与磁场方向有夹角,那就会受到洛伦兹力的作用。
洛伦兹力的方向总是垂直于电荷的运动速度和磁场方向所确定的平面,这可以用左手定则来判断。
伸出左手,让磁感线穿过掌心,四指指向正电荷运动的方向(如果是负电荷,则四指指向运动的反方向),那么大拇指所指的方向就是洛伦兹力的方向。
那么,洛伦兹力到底有哪些特点呢?其一,洛伦兹力始终与电荷的运动方向垂直,所以它只改变电荷运动的方向,而不改变其速度的大小。
这就意味着,如果只有洛伦兹力作用在电荷上,电荷会做匀速圆周运动。
其二,洛伦兹力对运动电荷不做功。
因为力的方向始终与速度方向垂直,所以在力的方向上没有位移,也就不会做功。
这一点与电场力是不同的,电场力可以对电荷做功,改变电荷的动能。
在实际生活中,洛伦兹力有着广泛的应用。
比如,在显像管中,电子枪发射出的电子在磁场的作用下发生偏转,从而能够准确地打在屏幕上的特定位置,形成图像。
还有在磁流体发电机中,等离子体中的带电粒子在磁场中受到洛伦兹力,从而使得正负电荷分别向不同的极板聚集,产生电动势。
再深入思考一下,洛伦兹力与电磁感应现象也有着密切的联系。
当导体在磁场中运动时,导体中的自由电子会受到洛伦兹力的作用,从而在导体两端产生感应电动势。
考点3 运动电荷在磁场中受到的力—洛伦兹力1.洛伦兹力运动电荷在磁场中受到的力叫做洛伦兹力.2.洛伦兹力的方向(1)判定方法左手定则:掌心——磁感线垂直穿入掌心;四指——指向正电荷运动的方向或负电荷运动的反方向;拇指——指向洛伦兹力的方向.(2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功).3.洛伦兹力的大小(1)v∥B时,洛伦兹力F=0.(θ=0°或180°)(2)v⊥B时,洛伦兹力F=qvB.(θ=90°)(3)v=0时,洛伦兹力F=0.1.关于电场力与洛伦兹力,以下说法正确的是()A.电荷只要处在电场中,就会受到电场力,而电荷静止在磁场中,也可能受到洛伦兹力B.电场力对在电场中的电荷一定会做功,而洛伦兹力对在磁场中的电荷却不会做功C.电场力与洛伦兹力一样,受力方向都在电场线和磁感线上D.只有运动的电荷在磁场中才会受到洛伦兹力的作用2.下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是()3.如下图所示是磁感应强度B、正电荷速度v和磁场对电荷的作用力F三者方向的相互关系图(其中B、F、v两两垂直).其中正确的是()4.下列关于洛伦兹力的说法中,正确的是()A.只要速度大小相同,所受洛伦兹力就相同B.如果把+q改为-q,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变5.带电粒子(重力不计)穿过饱和蒸汽时,在它走过的路径上饱和蒸汽便凝成小液滴,从而显示了粒子的径迹,这是云室的原理,如图所示是云室的拍摄照片,云室中加了垂直于照片向外的匀强磁场,图中oa、ob、oc、od是从o点发出的四种粒子的径迹,下列说法中正确的是()A.四种粒子都带正电B.四种粒子都带负电C.打到a、b点的粒子带正电D.打到c、d点的粒子带正电6.如图所示是电子射线管示意图.接通电源后,电子射线由阴极沿x轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,下列措施可采用的是()A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一磁场,磁场方向沿x轴正方向D.加一磁场,磁场方向沿y轴负方向7.如图所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是()A.当从a端通入电流时,电子做匀加速直线运动B.当从b端通入电流时,电子做匀加速直线运动C.不管从哪端通入电流,电子都做匀速直线运动D.不管从哪端通入电流,电子都做匀速圆周运动8.(多选)如图为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出.不计重力作用.可能达到上述目的的办法是()A.使a板电势高于b板,磁场方向垂直纸面向里B.使a板电势低于b板,磁场方向垂直纸面向里C.使a板电势高于b板,磁场方向垂直纸面向外D.使a板电势低于b板,磁场方向垂直纸面向外9.(多选)在方向如图所示的匀强电场(场强为E)和匀强磁场(磁感应强度为B)共存的场区中,一电子沿垂直电场线和磁感线的方向以速度v0射入场区,设电子射出场区时的速度为v,则()A.若v0>E/B,电子沿轨迹I运动,射出场区时,速度v>v0B.若v0>E/B,电子沿轨迹Ⅱ运动,射出场区时,速度v<v0C.若v0<E/B,电子沿轨迹Ⅰ运动,射出场区时,速度v>v0D.若v0<E/B,电子沿轨迹Ⅱ运动,射出场区时,速度v<v010.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图3-5-12所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是()A.油滴必带正电荷,电荷量为2mg/v0BB.油滴必带负电荷,比荷q/m=g/v0BC.油滴必带正电荷,电荷量为mg/v0BD.油滴带什么电荷都可以,只要满足q=mg/v0B11.(多选)如图所示,用丝线吊一个质量为m的带电(绝缘)小球处于匀强磁场中,空气阻力不计,当小球分别从等高的A点和B点向最低点O运动且两次经过O点时()A.小球的动能相同B.丝线所受的拉力相同C.小球所受的洛伦兹力相同D.小球的向心加速度相同12. (多选)如图所示,一个带正电荷的小球沿水平光滑绝缘的桌面向右运动,飞离桌子边缘A ,最后落到地板上.设有磁场时飞行时间为t 1,水平射程为x 1,着地速度大小为v 1;若撤去磁场,其余条件不变时,小球飞行时间为t 2,水平射程为x 2,着地速度大小为v 2.则下列结论正确的是( )A .x 1>x 2B .t 1>t 2C .v 1>v 2D .v 1和v 2相同13. (多选)如图所示,a 为带正电的小物块,b 是一不带电的绝缘物块(设a 、b 间无电荷转移),a 、b 叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F 拉b 物块,使a 、b 一起无相对滑动地向左加速运动,在加速运动阶段( )A .a 、b 一起运动的加速度减小B .a 、b 一起运动的加速度增大C .a 、b 物块间的摩擦力减小D .a 、b 物块间的摩擦力增大14. 如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B 的匀强磁场中.质量为m 、带电荷量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是( )A . 滑块受到的摩擦力不变B . 滑块到达地面时的动能与B 的大小无关C . 滑块受到的洛伦兹力方向垂直斜面向下D . B 很大时,滑块可能静止于斜面上15. (多选)质量为m 、带电荷量为q 的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B ,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下列说法中正确的是( )A . 小物块一定带正电荷B . 小物块在斜面上运动时做匀加速直线运动C . 小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D . 小物块在斜面上下滑过程中,当小物块对斜面压力为零时的速率为mg cos θBq16、如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由棒的下端以某一速度上滑的过程中一定有( )A. 小球加速度一直减小B. 小球的速度先减小,直到最后匀速C. 杆对小球的弹力一直减小D. 小球受到的洛伦兹力一直减小17、(多选)在一绝缘、粗糙且足够长的水平管道中有一带电量为q 、质量为m 的带电球体,管道半径略大于球体半径.整个管道处于磁感应强度为B 的水平匀强磁场中,磁感应强度方向与管道垂直.现给带电球体一个水平速度v ,则在整个运动过程中,带电球体克服摩擦力所做的功可能为( )A .0 B.12m (mg qB )2 C.12mv 2 D.12mv 2-(mg qB )2] 18、(多选)如图所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v -t 图象如图所示,其中错误的是( )19、(多选)如图所示,一个带正电荷的物块m ,由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D ′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D ″点停下来.则以下说法中正确的是( )A 、D ′点一定在D 点左侧B 、D ′点一定与D 点重合C 、D ″点一定在D 点右侧 D 、D ″点一定与D 点重合20、如图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m 、带电荷量为+q 的圆环A 套在OO ′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A 由静止开始下滑,试问圆环在下滑过程中:(1) 圆环A 的最大加速度为多大?获得最大加速度时的速度为多大?(2) 圆环A 能够达到的最大速度为多大?21、(多选)如图所示,一根水平光滑的绝缘直槽轨连接一个竖直放置的半径为R =0.50m 的绝缘光滑槽轨,槽轨处在垂直纸面向外的匀强磁场中,磁感应强度B =0.50T.有一个质量m =0.10g ,带电量为q =+1.6×10-3C 的小球在水平轨道上向右运动.若小球恰好能通过最高点,则下列说法正确的是( )A 、小球在最高点所受的合力为零B 、小球到达最高点时的机械能与小球在水平轨道上的机械能相等C 、如果设小球到达最高点的线速度是v ,则小球在最高点时式子mg +qvB =m v 2R 成立D 、如果重力加速度取10m/s 2,则小球的初速度v 0=4.6m/s22、如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g.空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面且向里的匀强磁场.某时刻,给小球一方向水平向右、大小为v0=5gR的初速度,则以下判断正确的是()A、无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B、无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球在最高点一定受到管壁的弹力作用C无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球到达最高点时的速度大小都相同D、小球在环形细圆管的最低点运动到所能到达的最高点的过程中,水平方向分速度的大小一直减小23、(多选)如图所示,设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知一粒子在重力、电场力和洛伦兹力作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,以下说法正确的是()A、这粒子必带正电荷B、A点和B点在同一高度C、粒子在C点时速度最大D、粒子到达B点后,将沿曲线返回A点。
运动电荷在磁场中受到的力运动电荷在磁场中受到的力是电磁学中一个重要的概念。
当一个电荷在磁场中运动时,它会受到一个垂直于运动方向和磁场方向的力,这个力被称为洛伦兹力。
本文将详细介绍洛伦兹力的计算公式、方向和大小等内容。
一、洛伦兹力的计算公式洛伦兹力是由磁场和电荷共同作用产生的,它可以用以下公式来计算:F = qvBsinθ其中,F表示洛伦兹力的大小;q表示电荷量;v表示电荷运动速度;B表示磁感应强度;θ表示电荷速度与磁场方向之间的夹角。
从公式可以看出,当电荷速度与磁场方向相垂直时,洛伦兹力最大;当二者平行时,洛伦兹力为零。
二、洛伦兹力的方向根据右手定则可以确定洛伦兹力的方向。
将右手握成拳头,让四指指向电荷运动方向,大拇指指向磁场方向,则大拇指所指的方向就是洛伦兹力的方向。
三、洛伦兹力的大小洛伦兹力的大小与电荷量、速度和磁场强度有关。
当电荷量或速度增加时,洛伦兹力也会相应增加;当磁场强度增加时,洛伦兹力也会增加。
需要注意的是,洛伦兹力只对运动电荷产生作用,静止电荷不受影响。
四、应用举例洛伦兹力在许多领域都有着广泛的应用。
以下是几个例子:1. 粒子加速器中:粒子在磁场中运动时,受到的洛伦兹力可以使它们加速或偏转,从而实现粒子束的控制和聚焦。
2. 电动机中:电动机中的导体在磁场中旋转时,受到的洛伦兹力可以产生扭矩,从而驱动机械运动。
3. 磁共振成像中:磁共振成像利用了核磁共振现象,在强磁场作用下对人体进行成像。
此时,人体内部水分子所带电荷会受到洛伦兹力作用而发生共振信号,从而实现成像。
总之,洛伦兹力是电磁学中一个重要的概念,它在许多领域都有着广泛的应用。
通过深入理解洛伦兹力的计算公式、方向和大小等内容,可以更好地理解和应用电磁学知识。
3、 洛伦兹力 带电粒子在磁场中的运动教学目标:1.掌握洛仑兹力的概念;2.熟练解决带电粒子在匀强磁场中的匀速圆周运动问题 教学过程: 1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式可得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
3.有关洛伦兹力大小的计算(1)正确画出带电粒子可能的运动轨迹图,a)定偏向:运用左手定则定轨迹偏向,其中要特别注意四指指向与负电荷的运动方向相反。
b)定圆心:主要利用v f ⊥或弦与半径垂直的关系确定。
找出对应交点就找到了圆心。
c)定半径:方法有两种,一是利用几何关系求;二是根据半径公式求。
(2)可能用到常用的四个关系式a) qvB= m R v 2= m 2ωr=m ωv=m Tπ2v ;可得: R=Bq mv ; c) T=Bq m π2; d)T t πθ2=3、带电粒子在有边界的匀强磁场中的运动 1、带电粒子在半无界磁场中的运动【例1】 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?M解:由公式知,它们的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距2r ,由图还可看出,经历时间相差2T /3。
答案为射出点相距Be mv s 2=,时间差为Bqmt 34π=∆。