带电粒子在磁场中运动的各种轨迹
- 格式:ppt
- 大小:348.50 KB
- 文档页数:9
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
解析磁场中带电粒子的运动轨迹磁场是物理学中重要的概念之一,其产生的力对带电粒子的运动轨迹具有重要影响,本文将着重解析磁场中带电粒子的运动轨迹。
首先,我们来了解一下磁场是如何产生的。
磁场是由运动的电荷产生的,或者说是由电流产生的。
在空间中存在一个导线,当导线中有电流通过时,就会产生一个磁场。
换句话说,磁场是由电流携带的,而带电粒子也可以理解为携带电流的微观粒子。
带电粒子在磁场中受到的力被称为洛伦兹力,它作用在带电粒子的速度方向的正交方向上,且其大小与带电粒子的电荷、速度以及磁场的强度有关。
洛伦兹力的方向与磁场的方向垂直,并且根据左手法则可知,洛伦兹力的方向与带电粒子矢量速度方向和磁场矢量方向之间存在一定的关系。
以一个具体的例子来说明:假设我们有一个正电荷q和一个磁场B,正电荷在磁场中运动。
在一开始,正电荷以速度v0向右运动。
根据洛伦兹力公式F = q * v0 * B,我们可知,洛伦兹力的方向与速度v0和磁场B的方向都垂直。
受到洛伦兹力的作用,正电荷将向上偏转。
然而,洛伦兹力只改变带电粒子的方向,并不改变其速率大小。
因此,在磁场中,带电粒子将继续沿着一个曲线路径运动。
这条曲线路径称为带电粒子的运动轨迹。
带电粒子在磁场中的轨迹可以使用螺线管的形状来描述。
在磁场中,带电粒子的轨迹是一条平面内的螺旋线或圆形轨迹。
当速度v0与磁场B的方向垂直时,带电粒子的轨迹是一个圆形。
当速度v0与磁场B的方向不垂直时,带电粒子的轨迹是一个螺旋线。
带电粒子的轨迹还受到其他因素的影响,如带电粒子的质量和电荷大小。
质量越大的带电粒子,其轨迹半径越大。
电荷越大的带电粒子,则受到的洛伦兹力越大。
这些因素共同决定了带电粒子在磁场中的运动轨迹的特性。
在现实生活中,我们可以看到磁场对带电粒子的轨迹产生很多有趣的影响。
例如,环形粒子加速器就是利用磁场来操控带电粒子的轨迹,以实现高速粒子的加速和碰撞。
在医学中,核磁共振成像(MRI)技术也利用了磁场对带电粒子(如氢原子核)的轨迹产生的影响,实现对人体内部结构的成像。
带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。
运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。
2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。
粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。
(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
第六节带电粒子在匀强磁场中的运动第一部分1、洛伦兹力演示实验(1)电子束由电子枪产生,玻璃泡内充有稀薄的气体,不加磁场时,在电子束通过是能够显示电子的轨迹是一条直线。
(2)一前一后相互平行的励磁线圈电流方向相同(相当于通电螺线管的一部分),两线圈之间可以产生匀强磁场, 带电粒子垂直于磁场方向进入磁场后将做匀速圆周运动,洛伦兹力提供向心力。
(3)粒子运动方向与磁场有一夹角(大于0度小于90度)轨迹为螺旋线,如下图注意:①带电粒子射入匀强磁场轨迹有三种情况:直线、圆、螺旋线②洛伦兹力永远不做功(a)不管其他力做不做功,洛伦兹力不做功(b)无论粒子做匀速圆周运动、非圆周曲线运动(如螺旋运动、)还是直线运动(还有其他力),洛伦兹力不做功2、匀速圆周运动的向心力、轨道半径、周期(1)洛伦兹力提供向心力:2224 ==v r F F qvB m mr Tπ==洛向(2)轨道半径:m v rqB =(3)周期:22r m Tv qBππ==专题一 半径大小变化(1)速度与半径成正比(质量、电荷量、磁感应强度不变条件下) 例如,铅板阻碍作用使粒子速度变小、半径也变小 周围空气阻碍作用使粒子速度变小,半径也变小 (2)磁感应强度与半径成反比例如,磁感应强度变强,半径反而变小(洛伦兹力不做功。
速度大小不变) 磁感应强度变弱,半径反而变大(洛伦兹力不做功。
速度大小不变)专题二 几个基本概念①动能: ②动量:Pm v=③荷质比:m qX下q 上m④向心力:专题三 磁场有一个边界1、三步走①找圆心、画弧 ②通过解三角形求半径③通过轨迹对应的圆心角求穿越时间2、确定轨迹所对圆心角的“两句口诀”①从一条边界射入且磁场足够大时,与边界多少度进就得多少度出 ②末速度相对于初速度偏转的角度一定等于轨迹所对圆心角(1)与边界090夹角射入匀强磁场①正电、y 轴、点磁场;负电、y 轴、点磁场;已知初末位置距离a ,求半径r ,求穿越磁场所用时间m v r qB=212K E m v =q m2=vF ma mr=向向②正电、x轴、叉磁场;负电、x轴、叉磁场;已知初末位置距离a,求半径r,求穿越磁场所用时间(2)与边界0120)夹角射入匀强磁场60(0正电、y轴、点磁场;负电、y轴、点磁场;已知初末位置距离a,求半径r,求穿越磁场所用时间(3)与边界0150)夹角射入匀强磁场30(0正电、x轴、叉磁场;负电、x轴、叉磁场;已知初末位置距离a,求半径r,求穿越磁场所用时间(4)与边界0135)夹角射入匀强磁场45(0正电、圆心、点磁场;负电、圆心、点磁场已知:速度、质量、电量、磁感应强度求:与x轴和y轴交点坐标,穿越时间专题四穿过矩形磁场1、三步走(1)找圆心、画弧:三垂线定理定圆心初位置垂线、末位置垂线、初末位置中垂线,三线中两线交点定圆心(有时需要把三线中的某一个平移)(2)通过解三角形求半径有时需要做辅助线(3)通过轨迹对应的圆心角求穿越时间2、两句口诀“第二句”①从一条边界射入且磁场足够大时,与边界多少度进就得多少度出②末速度相对于初速度偏转的角度一定等于轨迹所对圆心角例:专题五初速度指向圆形磁场的圆心1、三步走(1)三垂线定理:找圆心、画弧初位置垂线、末位置垂线、初末位置中垂线注意:末速度反向延长线过磁场圆心(2)通过解三角形求半径(3)通过轨迹对应的圆心角求穿越时间2、确定轨迹所对圆心角的“两句口诀”①从一条边界射入且磁场足够大时,与边界多少度进就得多少度出②末速度相对于初速度偏转的角度一定等于轨迹所对圆心角例:专题六 临界问题三步走注意:画弧时,按照半径从小到大画弧,一般画到恰好与边界相切 例: ①负电、y 轴、090进入叉磁场;②正电、y 轴、060进入点磁场;专题七 有电场力和磁场力时,带电粒子做圆周运动一定还有重力,并且重力等于电场力,只有洛伦兹力提供向心力(不像绳拉小球) 若除了洛伦兹力以外的力的合力不是零,则带电粒子不可能做圆周运动专题八 复合场计算题1、磁场中:末速度相对于初速度偏转的角度一定等于轨迹所对圆心角 (1)洛伦兹力提供向心力2224==vr F F qvB mmrTπ==洛向(2)轨道半径m v r qB=(3)周期22r m T vqBππ==2、加速电场中粒子从静止加速到0v ,电场力做正功220011=22U q m v F s E qs m v ==或3、偏转电场中 (1)位移关系①水平位移: 0x L v t == (用来算穿过时间) ②竖直位移(偏移量): 212y a t =③加速度: 2U q F E q a mmdm===(电场力是合外力,分子两个量、分母两个量)(2)速度关系①水平速度:0x v v = ②竖直速度:y v at =③加速度2U q F E q a m mdm===(电场力是合外力,分子两个量、分母两个量)④时间0x L t v v ==(穿过时间)⑤偏转角正切:tan y xv v θ=注意:末速度反向延长线把水平位移平分(3)电场力做正功求末速度大小、末动能大小 (1)2201122K W E m v m v =∆=-(2)电场力做功可以用力乘位移算、也可以用电压乘电荷量算 ①2201122W F y E qy m v m v ===-②12,,y W U q W U q W U q d===3、质谱仪(1)组成:粒子源O ,加速场U ,速度选择器(E,B ),偏转场B 2,胶片。
磁场中粒子运动方向
在磁场中,带电粒子的运动方向由洛伦兹力决定。
洛伦兹力是作用在带电粒子上的一种力,由磁场和电场共同产生。
1. 垂直于磁场方向的运动
当带电粒子的运动方向垂直于磁场方向时,洛伦兹力的方向垂直于粒子的运动方向和磁场方向。
在这种情况下,粒子在磁场中做圆周运动,轨迹呈圆形。
2. 平行于磁场方向的运动
当带电粒子的运动方向平行于磁场方向时,洛伦兹力为零,粒子沿直线运动,磁场对其运动方向没有影响。
3. 倾斜于磁场方向的运动
如果带电粒子的运动方向与磁场方向成一定角度,粒子的运动轨迹将呈螺旋形。
在这种情况下,粒子的运动可以分解为垂直于磁场方向的圆周运动和平行于磁场方向的直线运动。
需要注意的是,除了粒子的电荷量和速度外,磁场强度也会影响洛伦兹力的大小,从而影响粒子的运动轨迹。
在实际应用中,磁场中粒子的运动原理被广泛应用于质谱仪、粒子加速器等设备中。
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
带电粒子在磁场中的运动轨迹的分析报告
略带电的微粒子在磁场中的运动轨迹呈现出螺旋形,具体的运动轨迹是由离子的电荷
和大小、离子的电荷和磁场的角度、离子的速度等因素综合作用的结果。
例如,当离子在垂直于磁场的方向上具有恒定的速度时,离子会围绕磁场线旋转,运
动轨迹呈圆形或螺旋形;当离子在磁场方向上具有恒定的速度时,离子将沿着磁场线运动,而不会改变方向。
二、磁场对带电粒子运动的影响
磁场对带电粒子的影响主要表现在轨道形状和动力学行为方面。
1.轨道形状
当带电粒子运动时,其轨道形状受到磁场的影响。
如果磁场是均匀子,则带电粒子的
轨迹是一条螺旋线,如果磁场是非均匀的,则粒子的轨迹将是曲线而不是螺旋形。
2.动力学行为
磁场会影响带电粒子的动力学行为,如速度,能量和角动量。
在磁场中,带电粒子的
速度和速度方向随着时间变化而改变。
这可以解释为一个角动量守恒的结果。
总的来说,带电粒子在磁场中的运动轨迹和动力学行为受到磁场的影响。
磁场的强弱、方向和时间的变化会改变带电粒子的运动形式。
这对于理解带电粒子的特性和物理学的发
展具有重要的意义。