二次型与对称矩阵的标准形
- 格式:ppt
- 大小:910.57 KB
- 文档页数:7
§5 二次型及其标准形在解析几何中,为了便于研究二次曲线122=++cy bxy ax(4)的几何性质,我们可以选择适当的坐标旋转变换⎩⎨⎧+=-=,cos 'sin ',sin 'cos 'θθθθy x y y x x把方程化成标准形.1''22=+ny mx(4)式的左边是一个二次奇次多项式,从代数学的观点看,化标准型的过程就是通过变量的线性变换化简一个二次奇次多项式,使它只含有平方项。
这样一个问题,在许多理论问题或实际问题中常会遇到。
现在我们把这类问题一般化,讨论n 个变量的二次奇次多项式的化简问题。
定义 8 含有n 个变量nx x x ,,,21的二次奇次函数nn nn nnnnxx a x x a x x a xa x a x a x x x f 1,13113211222222211121222),,,(--+++++++=称为二次型。
取ijjia a +,则ij ji j i ij j i ij x x a x x a x x a +=2,于是(5)式可写成.1,2221122222212211121122111jinj i ijnnnnn nn nnnnx x a xa x x a x x a xx a x a x x a xx a x x a x a f ∑==++++++++++++= (6)对于二次型,我们讨论的主要问题是:寻求可逆的线性变换⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nyc y c y c x y c y c y c x y c y c y c x nnn n nnnnn22112222112212121111,, 使二次型只含平方项,也就是用(7)式代入(5),能使.2222211nny k y k y k f +++=这种只含平方项的二次型,称为二次型的标准型(或法式).如果标准型的系数nkk k ,,,21只在1,-1,0三个数中取值,也就是用(7)代入(5)能使则称上式为二次型的规范形。
二次型标准化二次型是数学中的一个重要概念,它在代数、几何和数学分析中都有着广泛的应用。
在线性代数中,二次型是一个关于一组变量的二次齐次多项式,它可以用矩阵的形式来表示。
在实际问题中,我们常常需要对二次型进行标准化处理,以便更好地理解和应用。
本文将介绍二次型标准化的相关知识和方法。
首先,我们来看一下什么是二次型标准化。
对于一个二次型,我们希望通过一系列的线性变换,将其化为一个特定的标准形式,这个标准形式通常是一个对角矩阵。
这样做的好处是可以简化问题的求解,使得二次型的性质更加清晰明了。
因此,二次型标准化是对二次型进行一系列变换,使其化为一个标准形式的过程。
接下来,我们来介绍二次型标准化的具体方法。
对于一个二次型,我们首先需要找到一个合适的线性变换矩阵,通过这个矩阵的变换,将原始的二次型化为一个对角矩阵。
这个线性变换矩阵通常是通过对称矩阵的特征值和特征向量来确定的。
具体来说,我们可以先求出原始二次型对应的实对称矩阵,然后通过特征值分解或者正交相似对角化的方法,找到一个合适的变换矩阵,使得通过这个矩阵的变换,原始二次型可以化为一个对角矩阵。
在实际操作中,我们可以通过一系列的算法来实现二次型的标准化。
常用的算法包括Jacobi方法、Givens变换等。
这些算法可以有效地求解对称矩阵的特征值和特征向量,从而得到二次型的标准形式。
在计算机科学领域,这些算法也有着广泛的应用,可以帮助我们高效地处理二次型标准化的问题。
最后,我们来总结一下二次型标准化的重要性。
通过对二次型进行标准化处理,可以使得原始的二次型问题更加简化和明了。
标准化后的二次型具有更加清晰的性质和结构,可以更方便地进行求解和分析。
因此,二次型标准化是数学中一个重要的概念和方法,对于理解和应用二次型都具有着重要的意义。
总之,二次型标准化是对二次型进行一系列线性变换,使其化为一个特定的标准形式的过程。
通过特征值和特征向量的分解,我们可以找到一个合适的变换矩阵,将原始二次型化为一个对角矩阵。
第二节 化二次型为标准形若二次型),,,(21n x x x f 经可逆线性变换化为只含平方项的形式,2222211n n y b y b y b则称之为二次型),,,(21n x x x f 的标准形.由上节讨论知,二次型AX X x x x f T n ),,,(21 在线性变换CY X 下,可化为.)(Y AC C Y T T 如果AC C T 为对角矩阵n b b b B 21则),,,(21n x x x f 就可化为标准形,2222211n n y b y b y b 其标准形中的系数恰好为对角阵B 的对角线上的元素,因此上面的问题归结为A 能否合同于一个对角矩阵.内容分布图示★ 二次型的标准性★ 用配方法化二次型为标准形 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 用初等变换化二次型为标准形★ 例5 ★ 例6★ 定理 3 4 ★ 用正交变换化二次型为标准形★ 例7 ★ 例8★ 二次型与对称矩阵的规范形★ 例9 ★ 例10★ 内容小结 ★ 课堂练习 ★ 习题5-2 ★ 返回内容要点:一、用配方法化二次型为标准形.定理1 任一二次型都可以通过可逆线性变换化为标准形. 拉格朗日配方法的步骤:(1) 若二次型含有i x 的平方项,则先把含有i x 的乘积项集中,然后配方,再对其余的变量进行同样过程直到所有变量都配成平方项为止, 经过可逆线性变换, 就得到标准形;(2) 若二次型中不含有平方项, 但是)(0j i a ij ,则先作可逆变换 ),,,2,1(j i k n k y x y y x y y x kk ji j j i i且 化二次型为含有平方项的二次型, 然后再按(ⅰ)中方法配方.注:配方法是一种可逆线性变换, 但平方项的系数与A 的特征值无关. 因为二次型f 与它的对称矩阵A 有一一对应的关系,由定理1即得:定理2 对任一实对称矩阵A ,存在非奇异矩阵C ,使 B AC C T 为对角矩阵. 即任一 实对称矩阵都与一个对角矩阵合同.二、用初等变换化二次为标准型设有可逆线性变换为CY X ,它把二次型AX X T 化为标准型BY Y T ,则 B AC C T . 已知任一非奇异矩阵均可表示为若干个初等矩阵的乘积, 故存在初等矩阵s P P P ,,,21 ,使 s P P P C 21 , 于是s P P EP C 21s TT T s T P P AP P P P AC C 2112.由此可见, 对n n 2矩阵E A 施以相应于右乘s P P P21的初等列变换, 再对A 施以相应于左乘Ts T T P P P ,,,21 的初等行变换, 则矩阵A 变为对角矩阵B , 而单位矩阵E 就变为所要求的可逆矩阵C .三、用正交变换化二次型为标准形定理 2 若A 为对称矩阵,C 为任一可逆矩阵,令,AC C B T ,则B 也为对称矩阵,且).()(A r B r注: (1) 二次型经可逆变换CY X 后,其秩不变,但f 的矩阵由A 变为;AC C B T (2) 要使二次型f 经可逆变换CY X 变成标准形,即要使AC C T 成为对角矩阵, 即.),,,(2222211212121n n n n n T T y b y b y b y y y b b b y y y ACY C Y定理3 任给二次型),(1,ij ji nj i j i ij a a x x a f 总有正交变换,PY X 使f 化为标准形,2222211n n y y y f其中n ,,,21 是f 的矩阵)(ij a A 的特征值.用正交变换化二次型为标准形(1) 将二次型表成矩阵形式,AX X f T 求出A ; (2) 求出A 的所有特征值 n ,,,21 ; (3) 求出对应于特征值的特征向量 n ,,,21 ;(4) 将特征向量n ,,,21 正交化, 单位化, 得n ,,,21 , 记);,,,(21n C(5) 作正交变换CY X ,则得f 的标准形.2222211n n y y y f四、二次型与对称矩阵的规范型将二次型化为平方项之代数和形式后,如有必要可重新安排量的次序(相当于作一次可逆线性变换),使这个标准形为)1(22112211r r p p p p x d x d x d x d 其中).,,2,1(0r i d i定理4 任何二次型都可通过可逆线性变换化为规范形.且规范形是由二次型本身决定的唯一形式,与所作的可逆线性变换无关.注: 把规范形中的正项个数p 称为二次型的正惯性指数,负项个数p r 称为二次型的负惯性指数, r 是二次型的秩.注: 任何合同的对称矩阵具有相同的规范形0000000p r pE E定理5 设A 为任意对称矩阵,如果存在可逆矩阵Q C ,,且,Q C 使得0000000pr p TE E AC C ,0000000qr p TE E AQ Q 则 .q p注: 说明二次型的正惯性指数、负惯性指数是被二次型本身唯一确定的。