总体特征值估计
- 格式:docx
- 大小:50.06 KB
- 文档页数:3
)、活动设计:进入青春期,中学生的生理、心理都产生很大的变化,性意识也随之觉醒。
他们乐意与异性同学交往。
热心与异性同学一起参与学习、讨论、班级活动等。
男生在女生面前,往往表现出健壮、刚强、宽容大度;女生在男生面前,则表现出温柔、亲切、热情,这是正常的性心理的表现。
但我们有些同学不能正确认识性心理、性意识的产生,不能正确处理与异性同学之间的关系。
有的同学在异性同学面前过分夸张地说话、做事,以引起异性同学对自己的注意;有的同学不能很好地控制自己对异性同学的好感,陷入感情的旋涡;有的同学为自己性意识的产生感到困惑,甚至以为自己变坏了,因而忧心忡忡。
……这些,严重影响了同学的身心健康,影响同学之间的交往,影响学习和工作。
而过去,学校对学生这方面的帮助教育远远不够,学生只能从书本或其他渠道偷偷了解有关的知识。
因此,有必要让学生从公开的渠道了解有关性意识、性道德的知识,了解青春期的性意识的特点,学会与异性同学正常交往。
教学内容:一是让学生了解青春期性意识的特点;二是懂得如何与异性同学正常交往。
教学目标:让学生了解性意识的产生是青少年成长过程中出现的正常现象,正确对待性意识,培养正确的性道德,与异性同学正常交往。
教学难点与重点:因青春期学生特有的羞涩,学生大多不敢公开议论这个话题,所以要事先做好部分学生的工作,让学生有思想准备,并收集资料准备上课。
1、青春期性意识产生的特点。
2、与异性同学正常交往。
教学形式:老师讲课与学生讨论发言结合教学准备:1、学生:请三、四个同学事先找有关男女同学交往的典型事例,有关的语录、格言,并且每人准备2分钟的说话,或谈典型事例,或谈自己的体会。
2、老师:准备有关男女同学交往的正反两方面的典型事例,有关的语录三、四条。
教学过程:(一)故事引入(2分钟)有一位男生,上高中以后,感到自己产生了一些奇怪的变化。
他特别喜欢坐在他后面的一个女生,每天都忍不住想回头看她几眼,听到这位女生大声的说笑声,他心里就发颤;有一种异样的感觉。
芯衣州星海市涌泉学校总体特征数的估计学习要求1. 知道平均数是对调查数据的一种简明的描绘,它表示变量一切可能值的算术平均值,从而实现对总体可靠度的估计,学习时仔细体会它的实际意义。
2. 纯熟掌握平均数的计算公式。
【课堂互动】 自学评价案例某校高一〔1〕班同学在教师的布置下,用单摆进展测试,以检验重力加速度.全班同学两人一组,在一样的条件下进展测试,得到以下实验数据〔单位:m/s2〕:248410.0168810.32 659168234 5928040怎样利用这些数据对重力加速度进展估计? 【分析】我们常用算术平均数∑=ni i a n 11〔其中i a (i =1,2,…,n)为n 个实验数据〕作为重力加速度的“最理想〞的近似值.它的根据是什么?处理实验数据的原那么是使这个近似值与实验数据之间的离差最小.设这个近似值为x ,那么它与n 个实验值i a (i =1,2,…,n)的离差分别为1a x -,2a x -,…,n a x -.由于上述离差有正有负,故不宜直接相加.可以考虑将各个离差的绝对值相加,研究|1a x -|+|2a x -|+…+|n a x -|取最小值时x 的值.但由于含绝对值,运算不太方便,所以考虑离差的平方和,即(1a x -)2+(2a x -)2+…+(n a x -)2,当此和最小时,对应的x 的值作为近似值,因为 (1a x -)2+(2a x -)2+…+(n a x -)2=22221212)(2n n a a a x a a a nx +⋅⋅⋅++++⋅⋅⋅++-,所以当)(121n a a a n x +⋅⋅⋅++=时离差的平方和最小,故可用)(121n a a a n+⋅⋅⋅++作为表示这个物理量的理想近似值,称其为这n 个数据1a ,2a ,…,n a 的平均数或者者均值,一般记为)(121n a a a na +⋅⋅⋅++=. 用计算器操作,验证:求得重力加速度的最正确近似值为774.9=x m/s2.【小结】1.n 个实数n a a a a ,,,,321⋯的和简记为∑=ni ia12.n 个实数n a a a a ,,,,321⋯,那么称n a a a n /)(21+⋯++为这n 个数据的平均数(average)或者者均值(mean)3.假设取值为n x x x ,,,21⋯的频率分别为n p p p ,⋯,,21,那么其平均数为n n p x p x p x +⋯+,2211【精典范例】例1某校高一年级的甲、乙两个班级〔均为50人〕的语文测试成绩如下〔总分:150〕,试确定这次考试中,哪个班的语文成绩更好一些。
总体参数估计的方法与比较统计学中的总体参数估计是为了根据样本数据来推断总体的一些特征或指标,以帮助我们了解和分析问题。
常见的参数包括总体均值、总体方差、总体比例等。
总体参数估计的方法有很多,每种方法有其优势和适用范围。
本文将介绍几种常见的总体参数估计方法,并进行比较。
一、点估计方法点估计是通过样本数据来估计总体参数的一种方法。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计:最大似然估计是通过寻找使观测到的样本数据出现的概率达到最大的参数值来估计总体参数。
它利用样本数据的信息,选择出使样本数据出现的可能性最大的总体参数估计值。
最大似然估计方法的优点在于拟合性好,当样本容量大且满足一定条件时,估计结果通常具有较好的性质。
2. 矩估计:矩估计是通过对样本矩的观察来估计总体参数。
矩估计方法基于样本的矩与总体的矩之间的关系进行参数估计。
它不需要对总体分布做出具体的假设,适用范围较广。
矩估计方法的优点在于简单易懂,计算方便。
二、区间估计方法点估计只给出了一个具体的数值,而区间估计则给出一个范围,用来估计总体参数的可能取值区间。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计:置信区间估计是在给定置信水平的情况下,通过样本数据得到总体参数的估计区间。
例如,我们可以通过样本数据得到一个总体均值的置信区间,表明有置信水平的概率下,总体均值落在估计的区间内。
置信区间估计方法的优点在于提供了对总体参数的估计不确定性的量化。
2. 预测区间估计:预测区间估计是在给定置信水平的情况下,通过样本数据得到未来观测的总体参数的估计区间。
与置信区间估计不同的是,预测区间估计对未来观测提供了一个对总体参数的估计范围。
预测区间估计方法的优点在于可以用于预测和决策。
三、方法比较与选择在实际应用中,我们需要根据具体问题选择适合的总体参数估计方法。
下面列举一些比较常见的情况,并给出对应的适用方法。
1. 总体分布已知的情况下,样本容量大:此时最大似然估计方法是一个很好的选择。
一知识梳理,基本概念的理解1.平均数的计算方法(1)如果有n 个数据x 1,x 2,…,x n ,那么x =n1(x 1+x 2+…+x n )叫做这n 个数据的平均数,x 读作“x 拔”.(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,x =x '+a .(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么x =nf x f x f x kk +++ 2211.6.方差的计算方法(1)对于一组数据x 1,x 2,…,x n ,s 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]叫做这组数据的方差,而s 叫做标准差.(2)公式s 2=n1[(x 12+x 22+…+x n 2)-n x 2]. (3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a .则s 2=n1[(x 1′2+x 2′2+…+x n ′2)-n 2x ']. 2总体平均值和方差的估计人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确. 范例解析例1、某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上,每隔1小时抽一包产品,称其重量是否合格,分别记录.抽查数据如下:甲车间:102,101,99,98,103,98,99;乙车间:110,105,94,95,109,89,98. 问(1)根据抽样是何种抽样方法?(2)估计甲乙两车间包装重量的均值与方差,并说明哪个均值的代表好?哪个车间包装重量较稳定? 例2有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5],6;[15.5,18.5],16;[18.5,21.5],18;[21.5,24.5],22; [24.5,27.5),20;[27.5,30.5),10;[30.5,33.5),8.(1)列出样本的频率分布表; (2)画出频率分布直方图; (3)估计数据小于30.5的概率例3、.某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:求全班的平均成绩和标准差.课堂练习1.在方差计算公式])20()20()20[(10121022212-++-+-=x x x s 中,数字10和20分别表示 () A .数据的个数和方差 B .平均数和数据的个数C .数据的个数和平均数D .数据组的方差和平均数2.从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是______3.x 1是1x ,2x ,3x ,……,40x 的平均值,2x 为41x ,42x ,43x ,……,100x 的平均值,x 是1x ,2x ,3x ,……,100x .则x =124060100x x +4.已知一组数据x ,-1,0,3,5的方差为S 2=6.8,则x=.5.已知一组数据x 1,x 2,…,x 10的方差是2,且(x 1-3)2+(x 2-3)2+…+(x 10-3)2=380,求x . 基础练习1.已知数据12n x x x ,,,的平均数为5x =,则数据137x +,237x +,…,37n x +的平均数为. 2.若M 个数的平均数是X,N 个数的平均数是Y,则这M+N 个数的平均数是______3.数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为.4,则下列说法正确的是.①甲的样本容量小 ②乙的样本容量小 ③甲的波动较小 ④乙的波动较小5.右图是2006年中央电视台举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个4 最低分后,所剩数据的平均数和方差分别为. 课堂小结1理解样本平均数的计算方法 2理解样本方差的计算方法 课后作业 1书上2练习册。
用样本的数字特征估计总体的数字特征在统计学中,我们经常需要对总体的数字特征进行估计。
由于总体往往很大或者难以获得全部数据,我们通常只能通过抽样得到部分数据。
这时,我们可以利用样本的数字特征来估计总体的数字特征,从而对总体进行推断。
本文将介绍用样本的数字特征估计总体的数字特征的方法和相关概念。
一、样本与总体的概念在统计学中,总体是指研究对象的全部个体或观察值的集合。
总体通常是我们想要了解的全部群体,比如全国人口总数、某一批产品的质量总体等。
样本是从总体中选取的、具有代表性的一部分个体或观察值的集合。
样本的选择要求有代表性,即能够反映总体的一般情况。
在实际应用中,由于种种原因往往难以获得全部总体数据,因此我们通常只能依靠样本数据来进行统计推断。
二、样本的数字特征样本的数字特征是用来表示样本数据的数字指标,通常包括中心位置的指标(均值、中位数)、离散程度的指标(标准差、方差)和形状的指标(偏度、峰度)等。
这些数字特征可以帮助我们了解样本数据的集中趋势、变异程度和分布形状,从而为估计总体的数字特征提供依据。
1. 中心位置的指标中心位置的指标用来表示样本数据的集中趋势,反映了样本数据的平均水平。
常用的中心位置指标包括均值和中位数。
均值是样本数据的平均值,可用于表示样本数据的平均水平。
中位数是将样本数据按照大小顺序排列后位于中间位置的数值,能较好地反映样本数据的中心位置。
2. 离散程度的指标离散程度的指标用来表示样本数据的分散程度,反映了样本数据的离散程度。
常用的离散程度指标包括标准差和方差。
标准差是样本数据偏离均值的平均距离的平方根,是对样本数据的分散程度的度量。
方差是标准差的平方,是样本数据离均值的平均偏差的度量。
3. 形状的指标1. 点估计点估计是利用样本的数字特征估计总体的数字特征的一种方法。
点估计通常是利用样本的数字特征来估计总体的数字特征的一个数值。
比较常用的点估计方法包括样本均值估计总体均值、样本标准差估计总体标准差等。
总体特征值的估计
总体特征值是统计中一个重要的概念,是应用统计学研究中常用的一类参数,它提供了关于总体本身的全面信息,包括总体位置参数和离散程度参数,例如均值、方差、百分位数、偏度和峰度等,因此总体特征值的估计变得尤为重要。
一、总体特征值估计的重要性
总体特征值估计可以帮助了解一个总体的某些特性,如均值、方差、偏度和峰度,这些特征值的参数可以帮助研究人员了解样本数据的结构和变化特征,以及和其他总体的比较。
此外,均值、方差等特征值可以用来估计总体参数,从而为研究开展提供线索和启示。
二、均值的估计
均值是总体特征值之一,它表示样本数据的中心位置,是衡量一组数据的整体水平的重要参数。
常用的均值估计方法有:最大似然法、最小二乘法、贝叶斯估计法和蒙特卡洛估计法等。
三、方差的估计
方差也是总体特征值之一,它表示样本数据的离散程度,是衡量一组数据波动程度的重要参数。
常用的方差估计方法有:无偏样本方差估计、偏权无偏方差估计、最大似然估计和蒙特卡洛估计法等。
四、偏度和峰度的估计
偏度和峰度是总体中的重要特征值,它们分别描述了样本数据的分布偏移程度和波动程度。
常用的偏度和峰度估计方法有:最大似然估计、最小二乘估计、贝叶斯估计、正态分布模型估计等。
五、小结
总体特征值估计是统计学研究中重要的一环,是评价样本数据分布状况和总体特征值的重要参考,通常利用最大似然法、最小二乘法、贝叶斯估计法和蒙特卡洛估计法等方法估计总体的均值、方差、偏度和峰度等参数。
能够有效、准确的估计总体参数,是做出正确统计研究判断和决策的关键所在,也是实现成功研究的一大条件。
总体特征值的估计总体特征值是指总体中的一些特征的数值。
例如,人口年龄分布中的平均年龄、产品的平均销售量等。
由于我们无法对整个总体进行测量,我们通常通过从总体中抽取样本来进行估计。
总体特征值的估计就是通过样本数据来推断总体特征值的方法。
最简单的总体特征值估计方法是使用样本均值进行估计。
样本均值是样本观察值的算术平均数。
我们可以假设样本均值近似于总体均值,并用样本均值来估计总体均值。
这是因为中心极限定理告诉我们,当样本大小足够大时,样本均值的抽样分布将接近正态分布,且以总体均值为中心。
这就允许我们使用样本均值来估计总体均值。
除了使用样本均值进行估计外,我们还可以使用样本中位数来估计总体中位数。
样本中位数是样本数据按照大小排列后处于中间位置的数值。
在总体分布不满足正态分布的情况下,样本中位数可能更适合作为估计总体中位数的方法。
此外,我们还可以使用样本百分位数来进行总体特征值的估计。
百分位数是指在有序的观察值中,一些特定百分比的观察值所对应的数值。
例如,第25百分位数是指将观察值按照大小排序后,处于第25%位置的数值。
通过计算样本的百分位数,我们可以对总体的分布进行描述,并推断总体特征值。
除了以上提到的方法,还存在其他一些方法可以用于总体特征值的估计。
例如,最大似然估计(Maximum Likelihood Estimation)和贝叶斯估计(Bayesian Estimation)等。
总体特征值的估计是统计学中一项重要的任务,它可以帮助我们对未知总体的一些特征进行推断。
然而,需要注意的是,估计的准确性取决于样本的大小和抽样方法的合理性。
当样本足够大且抽样方法得当时,我们可以更有效地估计总体特征值。
所以,在进行总体特征值的估计时,我们应该在理论和实践上都要进行合理的选择与判断。
总体特征数的估计
一般来说,总体特征数的估计可以分为两种情况:离散型总体和连续型总体。
对于离散型总体,可以采用频数估计法进行估计。
这种方法是通过从总体中随机抽取一个样本,统计样本中特征的个数,然后将这个统计结果与总体中的样本容量相乘,得到总体特征数的估计值。
例如,如果从总体中抽取了100个样本,且样本中特征的个数的平均值为5个,那么总体特征数的估计值就是100*5=500个。
对于连续型总体,可以采用面积估计法进行估计。
这种方法是通过从总体中随机抽取一个样本,统计样本中特征的平均值和标准差,然后根据正态分布的性质,将样本平均值加减几个标准差得到置信区间,将置信区间的面积与总体样本容量相乘,得到总体特征数的估计值。
例如,如果从总体中抽取了100个样本,样本中特征的平均值为50,标准差为10,选择95%的置信度,那么置信区间的宽度为2*1.96*10=39.2,总体特征数的估计值就是100*50±39.2=5060。
需要注意的是,总体特征数的估计只是一个预估值,其准确度受到样本容量和抽样方法的影响。
当样本容量越大、抽样方法越随机时,估计值越接近真实值。
另外,不同的估计方法也会有不同的精度和置信度,需要根据实际情况选择适合的方法。
总体特征数的估计和线性回归方程思考过程在统计学中,我们想了解某个总体的某些特征量,比如今年某省高考的数学平均成绩,根据近些年某地区的1月份的平均气温来估计今年1月份的平均气温等问题,这里的“数学平均成绩”“平均气温”就是我们所要了解的总体特征量,通常我们是从总体中先抽取一个样本,通过样本的特征量来反映总体的相应特征量,即用样本来估计总体,这是统计学的一个基本思想.所谓的总体特征量就是能反映总体某些特征的量.如总体平均数、方差、标准差等.对数据的刻画,一般从两个方面:一种是数据的集中趋势,如数据的平均数、中位数、众数等统计量;另一种是数据的离散性度量,如数据的极差、方差及标准差等统计量.根据实际问题的需求合理地选取一个样本,从样本数据中提取基本的数字特征(如平均数、方差等),并能作出合理的解释,这是学习统计的基本目标之一.在本节中,我们要学会从所抽取的样本数据中提取数据信息的能力,即会求数据的平均数、方差、标准差等,还要会用这些数据特征量去估计总体的相应的特征量.1.平均数: 若给定一组数据x 1,x 2,…,x n ,则平均数x =n1∑=n i 1x i (i =1,2,3,…,n ),通常用样本平均数来估计总体平均数.2.平均数的性质: (1)若给定一组数据x 1,x 2,…,x n 的平均数为x ,则ax 1,ax 2,…,ax n 的平均数为a x ;(2)若给定一组数据x 1,x 2,…,x n 的平均数为x ,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数为a x +b ;(3)若给定的一组数据x 1,x 2,…,x n 较大,直接求平均数较为烦琐时,可以将每个数据都减去常数a ,得到一组新数据x ′1,x ′2,…,x ′n ,计算出新数据组的平均数为x ',则原数据组的平均数为x '+a .3.方差:若给定一组数据x 1,x 2,…,x n ,则n1∑=n i 1(x i -x )2称作样本方差,记作s 2,它的算术平方根称作标准差,记作s ,即s =21)(1x x n i ni -∑=. 4.方差的性质:(1)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1,ax 2,…,ax n 的方差为a 2s 2;(2)若给定一组数据x 1,x 2,…,x n ,方差为s 2,则ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2;特别地,当a =1时,则有x 1+b ,x 2+b ,…,x n +b 的方差为s 2,这说明将一组数据的每一个数据都减去相同的一个常数,其方差是不变的,即不影响这组数据的波动性;(3)方差刻画了数据相对于均值的平均偏离程度;对于不同的数据集,当离散程度越大时,方差越大;(4)方差的单位是原始测量数据单位的平方,对数据中的极值较为敏感,标准差的单位与原始测量数据单位相同,可以减弱极值的影响.5.线性回归(1)统计相关 变量之间虽然存在着密切的关系,但从一个变量的每一个确定的值,不能求出另一个变量的确定的值,可是在大量的试验中,这种确定的联系,具有统计规律性,这种联系称作统计相关性.(2)线性回归方程 通过收集现实生活中两个有关联的变量的数据作出散点图,如果所有的散点分布成或近似成一条直线,我们说这两个变量有线性关系(否则就说两个变量不具有线性关系),然后运用最小二乘法的思想,用一条直线来拟合两个变量之间的关系:y =a +bx . 要求所有点相对于该直线的偏差的平方和尽可能达到最小.我们把y =a +bx 称作线性回归方程,其中b =x b y a x xn y x y x ni n i i n i ini i n i i i n i -=--∑∑∑∑∑=====,22121111)())((.(*) 求线性回归方程的一般步骤: ①根据两组数据计算x ,y ,∑=n i 1x i ,∑=n i 1y i ,∑=n i 1x i 2,∑=n i 1x i y i ; ②代入(*)计算得a ,b 的值; ③代入y =a +bx .。
一 知识梳理,基本概念的理解
1.平均数的计算方法
(1)如果有n 个数据x 1,x 2,…,x n ,那么x =
n
1
(x 1+x 2+…+x n )叫做这n 个数据的平均数,x 读作“x 拔”.
(2)当一组数据x 1,x 2,…,x n 的各个数值较大时,可将各数据同时减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,那么,x =x ' +a .
(3)加权平均数:如果在n 个数据中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(f 1+f 2+…+f k =n ),那么
x =n
f x f x f x k k +++Λ2211.
6.方差的计算方法
(1)对于一组数据x 1,x 2,…,x n ,s 2=n
1
[(x 1-x )2+(x 2-x )2+…+(x n -x )2]
叫做这组数据的方差,而s 叫做标准差.
(2)公式s 2=n
1
[(x 12+x 22+…+x n 2)-n x 2].
(3)当一组数据x 1,x 2,…,x n 中的各数较大时,可以将各数据减去一个适当的常数a ,得到x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a .
则s 2=n
1[(x 1′2+x 2′2+…+x n ′2)-n 2x '].
2总体平均值和方差的估计
人类的长期实践和理论研究都充分证明了用样本的平均数估计总体平均值,用样本方差估计总体方差是可行的,而且样本容量越大,估计就越准确. 范例解析
例 1、某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上,每隔1小时抽一包产品,称其重量是否合格,分别记录.抽查数据如下:
甲车间:102,101,99,98,103,98,99; 乙车间:110,105,94,95,109,89,98. 问(1)根据抽样是何种抽样方法? (2)估计甲乙两车间包装重量的均值与方差,并说明哪个均值的代表好?哪个车间包装重量较稳定?
例2有一个容量为100的样本,数据的分组及各组的频数如下: [,],6;[,],16;[,],18;[,],22; [,),20;[,),10;[,),8.
(1)列出样本的频率分布表; (2)画出频率分布直方图; (3)估计数据小于的概率
例3、.某班40人随机分为两组,第一组18人,第二组22人,两组学生在某次数学检测中的成绩如下表:求全班的平均成绩和标准
差.
课堂练习
1.在方差计算公式])20()20()20[(10
1
21022212-++-+-=
x x x s Λ中,数字10和20分别
7 8 9 9
4 4 6 4 7 3
表示 ( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数 D .数据组的方差和平均数 2.从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是,,,,,,,,(单位:千克).依此估计这240尾鱼的总质量大约是______
3.x 1是1x ,2x ,3x ,……,40x 的平均值,2x 为41x ,42x ,43x ,……,100x 的平均值,x 是1x ,2x ,
3x ,……,100x .则x =
12
4060100
x x +
4.已知一组数据x ,-1,0,3,5的方差为S 2=,则x= .
5.已知一组数据x 1,x 2,…,x 10的方差是2,且(x 1-3)2+(x 2-3)2+…+(x 10-3)2=380,求x .
基础练习
1.已知数据12n x x x L ,,
,的平均数为5x =,则数据137x +,237x +,…,37n x +的平均数为 .
2.若M 个数的平均数是X, N 个数的平均数是Y,则这M+N 个数的平均数是______
3.数据a 1,a 2,a 3,…,a n 的方差为σ2
,则数据2a 1,2a 2,2a 3,…,2a n 的方差为 . 4
1
,
则下列说法正确的是 .
①甲的样本容量小 ②乙的样本容量小 ③甲的波动较小 ④乙的波动较小 5.右图是2006年中央电视台举办的挑战主持人大赛上,七位评 委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个4 最低分后,所剩数据的平均数和方差分别为 . 课堂小结
1 理解样本平均数的计算方法
2 理解样本方差的计算方法 课后作业
1 书上
2 练习册。