量的两个值x1,x2,若x1 x2,则有fx1 fx2 .
小前提是fx x2 2x,x ,1满足增函数
的定义,这是证明本例的关键.
证明 任取x1,x2 ,1,且x1 x2,
fx1 fx2
x12 2x1
图2.1 3
而点M是RtΔABC的斜边AB的中点,DM
是斜边上的中线,
小前提
所以DM 1 AB.
结论
2
同理,EM 1 AB. 所以,DM EM. 2
大前提: M是P. "三段论"可以表是P.
我们还可以利用集合知识说明"三段论": 若集 合M的 所 有 元 素 都 具 有 性 质P, S是M的 一 个 子 集, 那 么S中 所 有 元 素 也 都 具 有 性质P.
上是增函数.
在演绎推理中,只要前提和推理形式是正确的, 结论必定是正确的.
思考 因为指数函数y ax是增函数,
而y
1
x
是
指数函数,
2
所以y
1
x
是增函数.
2
1上面的推理形式正确吗?
2推理的结论正确吗?为什么?
大前提 小前提
结论
上述推 理的形式正确, 但大前提是错误的
3在 一 个 标 准 大 气 压 下,水 的 沸 点 是1000 C,所
以在一个标准大气压下把水加热到1000 C时,水 会沸腾;
4一切奇数都不能被2整除, 2100 1 是奇数, 所以 2100 1不能被2整除;
5三角函数都是周期函数,tan α是三角函数,
因此tan α是周期函数;