由此可见, 应用三段论解决问题时,首先应该明 确什么是大前提和小前 提.但为了叙述简洁,如 果大前提是显然的,则可以省略. 再来看一个例子.
例6 证明函数 fx x2 2x 在 ,1上是增
函数.
分析 证明本例所依据的大前 提是增函数的定
义,即函数 y fx满足 : 在给定区间内任取自变 量的两个值x1, x2,若x1 x2,则有fx1 fx2 .
小前提是fx x2 2x,x ,1满足增函数
的定义,这是证明本例的关键.
证明 任取x1, x2 ,1,且x1 x2,
fx1 fx2
x12 2x1
x
2 2
2x2
x2 x1x2 x1 2.
因为x1 x2,所以x2 x1 0; 因为x1, x2 1, x1 x2,所以x2 x1 2 0.
就数学而言,演绎推理是证明数学结 论、建立数 学体系的重要思维过程 , 但数学结论、证明思路 等的发现,主要靠合情推理.因此,我们不仅要学会 证明,也要学会猜想.
参见《数学2》第二章的阅读与思考栏 目"欧几里得
的《原本》与公理化方法".
像这种尽可能少地选取 原始概念和一组不加证 明
的原始命名( 公理、公设 ),以此为出发点, 应用演绎 推理,推出尽可能多的结论的 方法,称为公理化方 法.公理化方法的精髓是 : 利用尽可能少的前提,推 出尽可能多的结论.
继《 原本》之后,公理化方法广泛应用于 自然科学、 社会科学领域.例如,牛顿在他的巨著《自然哲学的 数学原理 》中,以牛顿三定理为公理,运用演绎推理 推出关于天 体 空间的一系列科学理论 ,建立了牛 顿力学的一整套完整的 理论体系. 至此,我们学习了两种推理方 式 合情推理与演绎 推理. 思考 合情推理与演绎推理的 主要区别是什么? 归纳和类比是常用的合 情推理.从推理形式上看, 归纳是部分到整体、个 别到一般的推理,类比是 由特殊到特殊的推理 ;演绎推理是是由一般到 特 殊的推理.从推理所得结论来看, 合情推理的结论