【推理】
推理是根据一个或几个已知的判断来确定一个新 的判断的思维过程. 合情推理具有猜测和发现新结论、探索和提供解 决问题的思路和方向的作用; 演绎推理则具有证明结 论, 整理和建构知识体系的作用.
合情推理又分归纳推理与类比推理.
问题1. 观察以下几个一元二次方程的根与常数 项, 你有什么发现? 5x2+2x+3=0, 5x2+2x-3=0, x2+x+1=0, x2+x-1=0, 2x2-3x+4=0, 2x2-3x-4=0. 问题2. 观察下面几个偶数的分解, 你有什么发现? 6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=5+11. 方程 5x2+2x+3=0, x2+x+1=0, 2x2-3x+4=0 无实根; 方程 5x2+2x-3=0, x2+x-1=0, 2x2-3x-4=0 有二不 等实根. 由问题 1 猜测: 一元二次方程中, 常数项为正时, 方程无实根; 常数项为负时, 方程有两不等实根.
归纳推理可以发现新事实, 获得新结论.
【课时小结】
2. 归纳推理的基本思路
(1) 在部分对象中寻找相同点. 如问题 1, 2. (2) 在部分对象中分析运行结果的相同点. 如例1, 例4. (3) 在部分对象中寻找相关关系. 如练习第2题.
习题 2.1 A组 第 1、2、3 题.
习题 2.1 A 组 2an 1. 在数列{an}中, a1=1, an+1 = (nN*), 试 2 + an 猜想这个数列的通项公式. 解: a1=1. 2a1 21 2 = = . a2 = 2 + a1 2 + 1 3 2 2 2a2 1 3 = . = a3 = ∴猜想: 2 2 2 + a2 2 + 3 an = 2 . n+1 1 2 2a3 2 2 = . = a4 = 2 + a3 2 + 1 5 2 2 2 1 2 2 观察前 4 项: a1 = 1 = , a2 = , a3 = = , a4 = . 2 3 2 4 5