中科院量子力学历年详解(phileas)
- 格式:pdf
- 大小:906.63 KB
- 文档页数:91
第五章 量子力学的表象与表示§5.1 幺正变换和反幺正变换1, 幺正算符定义对任意两个波函数)(r v ϕ、)(r vψ,定义内积r d r r vv v )()(),(ψϕψϕ∗∫=(5.1)按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r vψ时,找到粒子处在状态()r vϕ的几率幅。
依据内积概念,可以定义幺正算符如下:“对任意两个波函数ϕ、ψ,如果算符$U恒使下式成立 ),()ˆ,ˆ(ψϕψϕ=U U(5.2) 而且有逆算符1ˆ−U存在,使得I U U U U ==−−11ˆˆˆˆ1,称这个算符U ˆ为幺正算符。
”任一算符Aˆ的厄米算符+A ˆ定义为:+A ˆ在任意ϕ、ψ中的矩阵元恒由下式左边决定),ˆ()ˆ,(ψϕψϕ+=A A(5.3) 由此,幺正算符Uˆ有另一个等价的定义: “算符Uˆ为幺正算符的充要条件是 I U U U U==++ˆˆˆˆ (5.4a) 或者说1ˆˆ−+=U U 。
” (5.4b)证明:若),()ˆ,ˆ(ψϕψϕ=U U成立,则按+U ˆ定义, ),ˆˆ()ˆ,ˆ(),(ψϕψϕψϕU U U U+== 由于ϕ、ψ任意,所以I U U=+ˆˆ 又因为Uˆ有唯一的逆算符1ˆ−U 存在,假定取ψψϕϕ11ˆ,ˆ−−=′=′U U ,则有 ()),ˆ)ˆ((ˆ,ˆ),()ˆ,ˆ(),(1111ψϕψϕψϕψϕψϕ−+−−−==′′=′′=U U U U U U所以I U U=−+−11ˆ)ˆ( 由于11)ˆ()ˆ(−++−=U U,上式即 I U U=+ˆˆ 这就从第一种定义导出了第二种定义。
类似,也能从第二种定义导出第一种定义。
从而,幺正算符的这两种定义是等价的。
1这里强调了$U−1既是对$U右乘的逆又是对$U 左乘的逆。
和有限维空间情况不同,无限维空间情况下,任一算符$U有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为$U−1。
中国科学院量子力学真题一、回答下列各问题(共30分)1.计算对易关系ˆ,L μν⎡⎤⎣⎦,其中,,,x y z μν=。
(4分) 2.分别说明什么样的状态是束缚态、简并态和负宇称态(3分)3.粒子自旋处于/2z s =的本征态10α⎡⎤=⎢⎥⎣⎦,试求x s 和y s 的不确定关系:?=。
(5分) 4.粒子在宽为a 的无限深方势阱中运动,估算其基态能量。
(3分)5.写出电子自旋z s 的二本征值和对应的本征态。
(2分)6.设粒子处于(,)lm Y θϕ状态下,求2()x L ∆和2()y L ∆(6分)7.计算下列对易式2(1),?(2),?d d x x dx dx ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦。
(4分) 8.何谓光的吸收?何谓光的受激辐射?何谓光的自发辐射?给出光学定理的表达式并说明它的意义。
(3分)二、(共10分)两个自旋1/2、质量为m 的无相互作用的全同费米子同处线性谐振子场中,写出基态和第一激发态的能量本征值和本征函数,并指出简并度。
三、(共20分)已知氢原子在0t =时处于状态21311112(,0)()()()000333r r r r ψψψ⎛⎫⎛⎫⎛⎫ψ=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中,()n r ψ为氢原子的第n 个能量本征态。
求能量及自旋z 分量的取值概率与平均值,写出0t >的波函数。
四、(共20分)一个一维无限深方势阱如图所示,在x =0和x =L 处有两个无限高壁,两个宽为a ,高为0V 的小微扰势垒中心位于/4x L =和3/4x L =处,a 是小量(例如/100a L )。
试用一级微扰论计算修正后的基态能量值及2n =和4n =的能级差。
五、(共20分)在0t =时,处于势2212V x m x ω=()中的粒子,由波函数,0()n n x x ψψ∑n ()=A描述,n ψ是能量本征态,()n n nn ψψδ''=,求(1) 归一化常数A ;(2) 给出0t >时,,x t ψ()的表达式;(3) 证明2,x t ψ()是一个周期函数,求出其最长的周期;(4) 求出0t =时,体系能量的平均值。
量子力学考研2021量子力学导论考研真题解析一、考研真题解析0粒子在势场(,)中运动,试用不确定关系估计基态能量。
[中国科学院2006研]【解题思路】利用不确定关系求解哈密顿量的最小值问题。
【解析】根据不确定原理有即因为所以只需要求解出的最小值就可以估计基态的能量。
令由得出所以基态能量为【知识储备】若[F,G]=0,则算符F和G有共同的本征函数系;其逆定理也成立。
对易算符的性质:在F和G的共同本征函数系中测量F和G,都有确定值。
若[F,G]≠0,则有不确定关系或经常使用的关系式21设粒子所处的外场均匀但与时间有关,即,与坐标r无关,试将体系的含时薛定谔方程分离变量,求方程解的一般形式,并取,以一维情况为例说明V(t)的影响是什么。
[中国科学院2006研]【解题思路】理解记忆含时薛定谔方程和定态薛定谔方程,以及分离变量法在求解薛定谔方程时的应用。
【解析】根据含时薛定谔方程令带入可得即上式左边是关于时间t的函数,右边是关于坐标r的函数,因此令它们等于常数s,得和所以对于令所以因此当时,相对于一维自由平面波函数,使得波函数是自由平面波随时间做改变的形式。
【知识储备】 薛定谔方程:波函数随时间的变化规律由含时薛定谔方程给出当U (r →,t )与t 无关时,可以利用分离变量法,将时间部分的函数和空间部分的函数分开考虑,y (r →)满足定态薛定谔方程此方程即是能量算符的本征方程。
其中,整个定态波函数的形式为一般情况下,若所求解能量的本征值是不连续的,则最后的波函数写成各个能量定态波函数的求和形式;如果能量是连续值,则相应的写成积分形式。
【拓展发散】当粒子所处的外场与时间和位置坐标都有关,即,可以利用题解相同的方式去探索波函数的具体形式,并且和定态以及只与时间有关的两种情形相比较,得出在这些不同情况下相应的势场函数的具体形式变化对波函数的影响。
22设U为幺正算符,若存在两个厄米算符A和B,使U=A+iB,试证:(1)A2+B2=1,且;(2)进一步再证明U可以表示成,H为厄米算符。