《反比例函数的应用》教案
- 格式:doc
- 大小:212.50 KB
- 文档页数:2
北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容。
本节课主要让学生掌握反比例函数的图象和性质,以及如何运用反比例函数解决实际问题。
教材通过实例引导学生认识反比例函数的应用,培养学生的数学应用能力。
二. 学情分析九年级的学生已经掌握了函数的基本概念和一次、二次函数的图象及性质,具备了一定的函数知识基础。
但是,对于反比例函数的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要注重引导学生通过观察、操作、思考、交流等方式,深入理解反比例函数的图象和性质,提高学生的数学思维能力。
三. 教学目标1.理解反比例函数的图象和性质;2.学会如何运用反比例函数解决实际问题;3.培养学生的数学应用能力和团队协作能力。
四. 教学重难点1.反比例函数的图象和性质;2.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入反比例函数,激发学生的学习兴趣;2.引导发现法:引导学生观察、操作、思考,自主发现反比例函数的图象和性质;3.实践操作法:让学生通过实际问题,运用反比例函数解决问题;4.小组讨论法:培养学生的团队协作能力,提高学生的数学思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件;2.实例:准备一些实际问题,让学生运用反比例函数解决;3.练习题:准备一些练习题,巩固学生对反比例函数的理解。
七. 教学过程1.导入(5分钟)利用实例引入反比例函数,激发学生的学习兴趣。
例如,讲解一段路程不变,速度与时间的关系。
2.呈现(10分钟)展示反比例函数的图象和性质,引导学生观察、操作、思考,自主发现反比例函数的特点。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用反比例函数解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,巩固对反比例函数的理解。
北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容,主要让学生掌握反比例函数的图象和性质,以及如何利用反比例函数解决实际问题。
本节内容是在学生已经掌握了反比例函数的定义和基本性质的基础上进行学习的,通过本节课的学习,使学生能够进一步理解和掌握反比例函数,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数也有了一定的了解。
但在实际应用反比例函数解决生活中的问题时,往往会因为对函数思想的理解不够深入而感到困惑。
因此,在教学过程中,需要教师引导学生将反比例函数与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解反比例函数的图象和性质。
2.学会如何利用反比例函数解决实际问题。
3.提高学生的数学应用能力。
四. 教学重难点1.反比例函数的图象和性质。
2.如何将反比例函数应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生探索反比例函数的图象和性质;通过案例教学,使学生了解如何将反比例函数应用于实际问题中;通过小组合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 教学准备1.准备相关的案例材料和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾反比例函数的定义和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示反比例函数的图象,让学生观察和分析反比例函数的性质。
同时,教师给出一些实际问题,让学生尝试用反比例函数解决。
3.操练(10分钟)教师引导学生分组讨论,如何将实际问题转化为反比例函数问题。
学生在讨论过程中,教师给予指导和点拨。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
在学生解题过程中,教师巡回指导,帮助学生巩固反比例函数的应用。
《反比例函数的应用》教学教案教学目标:1.了解反比例函数的定义和特点;2.掌握反比例函数的应用;3.能够解决与反比例函数相关的实际问题。
教学重点:1.反比例函数的定义和特点;2.反比例函数的应用。
教学难点:1.如何通过实际问题建立反比例函数的模型;2.如何用反比例函数解决实际问题。
教学准备:1.教师准备:白板、彩色粉笔、教学PPT;2.学生准备:参考教材、铅笔、计算器。
教学过程:一、导入(5分钟)教师通过引入一道有关反比例函数的问题,如“小明去小卖部买了10张明信片,一共花了15元,那么20张明信片一共要花多少元?”来引起学生兴趣,激发学生思考。
二、新知讲解(20分钟)1.反比例函数的定义教师通过讲解反比例函数的定义和示例,引导学生了解反比例函数的性质和图像特点。
反比例函数的一般形式为:y=k/x(k≠0)其中,k为常数,称为反比例函数的比例因子,x≠0。
反比例函数图像的特点是:通过原点,单调递减,左侧和右侧的趋势趋近于x轴和y轴。
2.反比例函数的应用教师通过示例演示反比例函数的应用,并结合实际例子进行讲解,如:a.两个物体的速度和时间的关系(速度与时间成反比);b.人工作时间和效率的关系(工作时间与效率成反比);c.电阻和电流的关系(电阻与电流成反比)。
三、实例分析(25分钟)教师给出一些实际问题,要求学生通过建立反比例函数的模型来解决。
教师通过引导学生寻找问题中的关键变量和因果关系,然后利用反比例函数的特性建立函数模型,并计算出相关的数值。
例1:甲乙两个工人同时做一件活,如果甲一个人能在8小时内完成,那么需要乙多少小时才能完成?假设两人的效率是相同的。
解析:设乙需要x小时才能完成工作,由题意可知,甲乙的工作时间和效率成反比。
根据反比例函数的性质,可以列出方程:8×1=x×1,解得x=8/1=8(小时)。
四、拓展练习(15分钟)教师设计其他实际问题,要求学生自行构建反比例函数模型,解决问题,并进行相应的计算。
反比例函数的应用【教学目标】(一)教学知识点。
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。
2.体会数学与现实生活的紧密联系,增强应用意识。
提高运用代数方法解决问题的能力。
(二)能力训练要求。
通过对反比例函数的应用,培养学生解决问题的能力。
(三)情感与价值观要求。
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。
理解问题,并能综合运用所学的知识和技能解决问题。
发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用。
【教学重点】用反比例函数的知识解决实际问题。
【教学难点】如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题。
【教学方法】教师引导学生探索法。
【教学过程】一、创设问题情境,引入新课师:有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?生:是为了应用。
师:很好。
学习的目的是为了用学到的知识解决实际问题。
究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
二、新课讲解(一)某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地。
为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了的反比例函数吗?为什么?分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关若是则可用反比例函数的有关知识去的值。
对应的就有唯一的一个p值和它对应,根据0.1m2。
(5)2是已知图像上某点的横坐标为不大于6000,求这些点所处的位置及它们横坐标的取值范围。
师:这位同学回答得很好,下面我要提一个问题,大家知道反比例函数的图像是两支双曲(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流。
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。
27.3 反比例函数的应用-冀教版九年级数学上册教案一、教学目标1.了解什么是反比例函数。
2.掌握解决简单的反比例函数问题的方法。
3.能够从生活中的实际问题中抽象出反比例函数,并求解。
二、教学重点1.什么是反比例函数。
2.反比例函数的应用。
三、教学难点1.如何将实际问题抽象成数学中的反比例函数。
2.在求解应用问题时,如何找出问题中的反比例关系。
四、预习导学1.在学完本单元的基本知识和方法后,为何我们需要认识反比例函数和反比例函数的应用?2.了解反比例函数的定义和图像特点。
3.运用反比例函数解决简单问题。
五、教学内容及方法1. 什么是反比例函数(1)定义反比例函数指函数y = k / x (k ≠ 0)。
其中x ≠ 0,y ≠ 0,k 是常数。
即 x 和 y 之间的关系是:y 与 1 / x 成反比例关系。
(2)图像特点反比例函数 y = k / x 的图像总是通过第一象限的第二、四象限中,以原点为对称轴的两个象限中的一点和第三象限的第四象限中以轴的两点。
2. 反比例函数的应用(1)问题一一根绳子剪成两段,一段长度为 3.6 米,另一段长度为 x 米,如果两段绳子的长度之积为 7.2 平方米,那么另一段绳子的长度是多少?(2)解答一根据几何知识可得,两段绳子的长度之积为其面积,即 3.6x = 7.2。
将上式变形为 x = 7.2 / 3.6,得 x = 2。
因此,另一段绳子的长度为 2 米。
(3)问题二一张平直的纸片,在长度为 50 厘米的一侧上叠起 8 厘米,使其另一边受到的力减轻到原来的 1/4,求纸片的长度。
(4)解答二设纸片的长度为 x 厘米,则根据题目中的条件可以列出式子: 1/4×(50 + x - 8) = x 解得:x = 168。
因此,纸片的长度是 168 厘米。
六、课后作业1.自学反比例函数的基本知识和图像特点,并能够熟练解决简单问题。
2.预习下一节课程内容,做好思维准备。
反比例函数实际应用教学设计(精选7篇)反比例函数实际应用教学设计1一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
反比例函数教案反比例函数教案(通用12篇)作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。
优秀的教案都具备一些什么特点呢?下面是小编整理的反比例函数教案,欢迎大家借鉴与参考,希望对大家有所帮助。
反比例函数教案篇1教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。
教学重点:反比例函数的应用教学程序:一、新授:1、实例1:(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?答:P=600s (s0),P 是S的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?答:P=3000Pa(3)、如果要求压强不超过6000Pa,木板的面积至少要多少?答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做1、(1)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?电压U=36V , I=60k2、完成下表,并回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R() 3 4 5 6 7 8 9 10I(A )3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;随堂练习:P145~146 1、2、3、4、5作业:P146 习题5.4 1、2反比例函数教案篇2一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。
二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
《反比例函数的应用》
教案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
《3反比例函数的应用》教案
教学目标:
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
3、通过对反比例函数的应用,培养学生解决问题的能力.
教学重点:
掌握从实际问题中建构反比例函数模型.
教学难点:
从实际问题中寻找变量之间的关系.
教学过程:
某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗当人和木板对湿地的压力一定时,随着木板面积S (m2)的变化,人和木板对地面的压强p(Pa)将如何变化如果人和木板对湿地的压力合计600N,那么:
(1)含S的代数式表示p,p是S的反比例函数吗为什么
(2)当木板面积为0.2m2时,压强是多少
(3)如果要求压强不超过6000Pa,木板面积至少要多大
(4)在直角坐标系中,作出相应的函数国象.
课堂小结:
本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么可以看什么逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图像,渗透数形结合的思想.
2。