bp网络训练1
- 格式:ppt
- 大小:494.00 KB
- 文档页数:41
1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。
关于网络具体建立使用方法,在后几节的例子中将会说到。
4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。
若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。
归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。
神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinVal ue)/(MaxVal ue-MinVal ue)说明:x、y分别为转换前、后的值,MaxVal ue、MinVal ue分别为样本的最大值和最小值。
BP神经网络优化的基本方法
1.神经网络调优:
(1) 选择合适的网络结构:神经网络优化的首要之务是选择一个合适的
网络结构,尽可能给出正确高效的结果,并且能够有效的优化解决模
型的问题。
一般来说,在计算机视觉任务中,可采用经典的CNN和RNN网络结构。
(2) 提高网络深度:网络深度是指神经网络中隐层的数目。
一般来说,
网络深度越深,网络的表达能力就越强,模型的精度也就越高。
然而,当网络的深度较大时,会出现梯度消失或梯度爆炸的情况,所以,要
在参数调优的过程中,控制网络的深度。
(3) 模型参数调优:另外还需要调整模型的各个参数,如学习率,优化
器类型,正则化等,以便有效提高模型的性能。
2.模型融合:
(1) 考虑不同特征模型之间的不同:一组特定任务上的模型融合模型,
既可以提高模型性能,也可以降低结果输出的方差。
同时还应该考虑
不同模型之间的差异,并结合起来形成不同的模型组合,以获得最优
模型。
(2) 考虑多种融合方式:除了考虑不同模型之间的模型融合外,还可以
考虑模型融合的不同种类,如加权模型融合,投票模型融合,stacking 模型融合。
(3) 使用效果评估工具:融合多种模型后,要使用有效的效果评估工具对融合结果进行评估。
可以从准确率,召回率,F1分数等方面对模型进行评估,以确定最佳模型融合方案。
bp神经网络使用技巧BP神经网络是一种常用的人工神经网络模型,广泛应用于模式识别、分类、回归和预测等领域。
下面介绍一些BP神经网络的使用技巧。
1. 数据预处理:在使用BP神经网络之前,需要对数据进行预处理。
常见的预处理方法包括数据归一化、特征选择和数据平衡。
数据归一化可以将不同特征的取值范围映射到相同的区间,有助于提高网络的训练效果。
特征选择可以去除冗余的特征,减少网络的复杂性,提高网络的泛化能力。
数据平衡可以解决样本不平衡的问题,提高网络对于少数类的识别能力。
2. 网络结构设计:BP神经网络的结构包括输入层、隐藏层和输出层。
合理的网络结构设计对于网络的训练和泛化能力至关重要。
通常可以通过交叉验证和网格搜索等方法来选择合适的网络结构。
隐藏层的神经元数量应该适中,过少会导致网络的表示能力不足,过多会增加网络的复杂性,容易过拟合。
3. 学习率的选择:学习率决定了网络权重在每次迭代中的更新幅度。
学习率过大会导致训练过程不稳定,容易出现发散;学习率过小会导致训练速度慢、易陷入局部最优解。
一般可以通过试验选择一个合适的学习率来训练网络,并且可以使用自适应学习率调整策略,如动量法和学习率衰减等。
4. 防止过拟合:BP神经网络容易陷入过拟合的问题,即对于训练数据的拟合过好,但对于新的未知数据的泛化能力较差。
为了防止过拟合,可以使用正则化方法,如L1正则化、L2正则化和dropout等。
另外,提前停止训练也是一种有效的防止过拟合的方法,当网络的验证误差达到最小值后停止训练,避免网络继续学习训练数据的细节。
5. 并行计算:在大规模数据和复杂网络结构的情况下,BP神经网络的计算复杂度较高,训练过程较慢。
为了加速训练过程,可以利用并行计算的技术,如GPU加速和分布式计算。
GPU使用多个线程同时进行计算,提高了计算速度。
分布式计算将网络的训练分为多个任务,在多个计算节点上并行计算,进一步加快了训练速度。
综上所述,BP神经网络的使用技巧包括数据预处理、网络结构设计、学习率的选择、防止过拟合和并行计算。
BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。
2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。
5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。
实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。
经过训练,我们得到了权值矩阵和偏置向量。
当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。
2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。
5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。
这就是BP神经网络算法的基本流程。
在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。
但是,上述流程是BP神经网络算法的基本框架。
bp使用方法BP(反向传播算法)是一种用于训练神经网络的算法。
它通过反向传播误差来调整神经网络中的权重和偏差,以使其能够更好地逼近目标函数。
BP算法是一种有监督学习算法,它需要有标记的训练集作为输入,并且可以通过梯度下降法来最小化目标函数的误差。
BP算法的基本思想是在神经网络中,从输入层到输出层的正向传播过程中,通过计算网络的输出值与目标值之间的差异(即误差),然后将这个误差反向传播到网络的每一层,在每一层中调整权重和偏差,以最小化误差。
这个反向传播的过程将误差逐层传递,使得网络的每一层都能对误差进行一定程度的“贡献”,并根据这个贡献来调整自己的权重和偏差。
具体来说,BP算法可以分为以下几个步骤:1. 初始化网络:首先需要确定神经网络的结构,包括输入层、隐藏层和输出层的神经元个数,以及每层之间的连接权重和偏差。
这些权重和偏差可以初始化为随机值。
2. 前向传播:将输入样本送入网络,按照从输入层到输出层的顺序,逐层计算每个神经元的输出值。
具体计算的方法是将输入值和各个连接的权重相乘,然后将结果求和,并通过一个非线性激活函数(如Sigmoid函数)进行映射得到最终的输出值。
3. 计算误差:将网络的输出值与目标值进行比较,计算误差。
常用的误差函数有均方误差函数(Mean Squared Error,MSE)和交叉熵函数(Cross Entropy),可以根据具体问题选择合适的误差函数。
4. 反向传播:从输出层开始,根据误差对权重和偏差进行调整。
首先计算输出层神经元的误差,然后根据误差和激活函数的导数计算输出层的敏感度(即对权重的影响),并根据敏感度和学习率更新输出层的权重和偏差。
5. 更新隐藏层权重:同样地,根据输出层的敏感度,计算隐藏层的敏感度,并更新隐藏层的权重和偏差。
隐藏层的敏感度可以通过将输出层的敏感度按权重加权求和得到。
6. 重复步骤4和5:重复执行步骤4和5,将误差逐层传播,更新每一层的权重和偏差,直到达到训练的停止条件(如达到最大迭代次数或误差降至某个阈值)。
只需模仿即可。
就能轻松掌握。
1、BP网络构建(1)生成BP网络net newff PR S S SNl TF TF TFNl BTF BLF PF=(,[1 2...],{ 1 2...},,,)R⨯维矩阵。
PR:由R维的输入样本最小最大值构成的2S S SNl:各层的神经元个数。
[1 2...]TF TF TFNl:各层的神经元传递函数。
{ 1 2...}BTF:训练用函数的名称。
(2)网络训练net tr Y E Pf Af train net P T Pi Ai VV TV=[,,,,,] (,,,,,,)(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai TBP网络的训练函数训练方法训练函数梯度下降法traingd有动量的梯度下降法traingdm自适应lr梯度下降法traingda自适应lr动量梯度下降法traingdx弹性梯度下降法trainrpFletcher-Reeves共轭梯度法traincgfPloak-Ribiere共轭梯度法traincgpPowell-Beale共轭梯度法traincgb量化共轭梯度法trainscg拟牛顿算法trainbfg一步正割算法trainossLevenberg-Marquardt trainlmBP网络训练参数训练参数参数介绍训练函数net.trainParam.epochs最大训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.max_fail 最大失败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.min_grad 最小梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显示训练迭代过程(NaN表示不显示,缺省为25)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time 最大训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc 动量因子(缺省0.9)traingdm、traingdxnet.trainParam.lr_inc 学习率lr增长比(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec 学习率lr下降比(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省为1.04)traingda、traingdxnet.trainParam.delt_inc 权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec 权值变化减小量(缺省为0.5)trainrpnet.trainParam.delt0 初始权值变化(缺省为0.07)trainrpnet.trainParam.deltamax 权值变化最大值(缺省为50.0)trainrpnet.trainParam.searchFcn 一维线性搜索方法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainossnet.trainParam.sigma 因为二次求导对权值调整的影响参数(缺省值5.0e-5)trainscg mbda Hessian矩阵不确定性调节参数(缺省为5.0e-7)trainscg net.trainParam.men_reduc 控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1)trainlmnet.trainParam.mu μ的初始值(缺省为0.001)trainlm net.trainParam.mu_dec μ的减小率(缺省为0.1)trainlm net.trainParam.mu_inc μ的增长率(缺省为10)trainlmnet.trainParam.mu_maxμ的最大值(缺省为1e10) trainlm2、BP 网络举例 举例1、%traingd clear; clc;P=[-1 -1 2 2 4;0 5 0 5 7]; T=[-1 -1 1 1 -1];%利用minmax 函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;% net.trainParam.lr=0.05; net.trainParam.epochs=300; net.trainParam.goal=1e-5; [net,tr]=train(net,P,T);net.iw{1,1}%隐层权值 net.b{1}%隐层阈值net.lw{2,1}%输出层权值 net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
BP神经网络算法学习
BP神经网络是一种用于处理各种模式识别问题的功能强大的算法,
它被广泛应用于自然语言处理、模式识别、机器学习等领域。
它是一种反
向传播算法,反向传播算法是通过反向传播来实现权值和偏置单元的学习的。
BP神经网络是一种程序运行的形式,它以神经元网络的形式将数据
转换为计算机明白的信息。
它结合了神经元网络的层次结构,并且能够将
网络中的每一层次输入的数据根据权重和偏置单元做出反应,最终形成输
出结果。
BP神经网络分为三个主要部分:输入层、隐层和输出层。
输入层是
数据输入的开始,通常是将输入数据存储在神经元中;隐层是神经元的中
间层,它们从输入层获得信息,并对其进行处理计算,以形成特征和模式;输出层是最终结果形成的地方,从隐层收集所有特征和模式,并将其转换
为输出结果。
BP神经网络的学习是由反向传播算法来实现的。
它是通过计算权值
和偏置单元,使网络的输出结果逐渐逼近预期输出,从而实现权值和偏置
单元的学习的。
反向传播是在网络结构的各层数据和结果之间进行多次反
向计算,使网络在训练过程中不断优化,最终达到期望的输出结果。