线性神经网络 2-5-2 BP网络 BP学习(训练)算法
- 格式:ppt
- 大小:111.00 KB
- 文档页数:12
BP神经网络算法步骤
<br>一、概述
BP神经网络(Back Propagation Neural Network,BPNN)是一种经
典的人工神经网络,其发展始于上世纪80年代。
BP神经网络的原理是按
照误差反向传播算法,以及前馈神经网络的模型,利用反向传播方法来调
整网络各层的权值。
由于其具有自动学习和非线性特性,BP神经网络被
广泛应用在很多和人工智能、计算智能紧密相关的诸如计算机视觉、自然
语言处理、语音识别等领域。
<br>二、BP神经网络的结构
BP神经网络经常使用的是一种多层前馈结构,它可以由输入层,若
干隐藏层,以及输出层三部分组成。
其中,输入层是输入信号的正向传输
路径,将输入信号正向传送至隐藏层,在隐藏层中神经元以其中一种复杂
模式对输入信号进行处理,并将其正向传送至输出层,在输出层中将获得
的输出信号和设定的模式进行比较,以获得预期的输出结果。
<br>三、BP神经网络的学习过程
BP神经网络的学习过程包括正向传播和反向传播两个阶段。
其中,
正向传播是指从输入层到隐藏层和输出层,利用现有的训练数据,根据神
经网络结构,计算出网络每一层上各结点的的激活值,从而得到输出结果。
正向传播的过程是完全可以确定的。
BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。
每个连接都有一个权重,表示信息传递的强度或权重。
算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。
2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。
重复该过程,直到达到输出层。
3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。
4.反向传播:根据误差反向传播,调整网络参数。
通过链式求导法则,计算每层的误差并更新对应的权重和阈值。
5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。
优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。
(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。
(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。
(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。
2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。
(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。
(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。
三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。
2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。
3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。
4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。
BP神经网络算法步骤
传统的BP算法简述
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。
具体步骤如下:
(1)初始化,随机给定各连接权[w],[v]及阀值θi,rt.
(2)由给定的输入输出模式对计算隐层、输出层各单元输出
(3)计算新的连接权及阀值,计算公式如下:
(4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。
第一步,网络初始化
给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e,给定计算精度值和最大学习次数M。
...文档交流仅供参考...
第二步,随机选取第k个输入样本及对应期望输出
第三步,计算隐含层各神经元的输入和输出
第四步,利用网络期望输出和实际输出,计算误差函数对输
出层的各神经元的偏导数
第五步,利用隐含层到输出层的连接权值、输出层的和隐含层的输出计算误差函数对隐含层各神经元的偏导数
第六步,利用输出层各神经元的和隐含层各神经元的输出来修正连接权值
第七步,利用隐含层各神经元的和输入层各神经元的输入修正连接权。
第八步,计算全局误差
第九步,判断网络误差是否满足要求.当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。
否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习....文档交流仅供参考...
·····谢阅
·····谢阅。
BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。
(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。
每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。
输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。
(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。
同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。
隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。
2.反向传播:在前向传播后,可以计算出网络的输出值。
接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。
(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。
误差函数的具体形式根据问题的特点而定。
(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。
首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。
依此类推,直到计算出输入层神经元的误差。
(3)更新权值:利用误差和学习率来更新网络中的权值。
通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。
权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。
以上就是BP神经网络的学习算法。
在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。
此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。
BP神经网络算法程序一、BP神经网络算法原理BP神经网络算法包括输入层、隐藏层和输出层三个层次。
每个层次的神经元节点与下一层次的神经元节点之间存在权重系数。
神经元节点通过输入信号经过激活函数的处理得到输出信号,并将输出信号传递给下一层次的神经元节点。
反向传播过程中,首先根据误差评估结果计算输出层的误差信号,再根据该误差信号分别计算隐藏层和输入层的误差信号。
然后根据误差信号的计算结果,逐层更新网络的权重系数。
二、BP神经网络算法步骤1.初始化网络权重:随机初始化网络各层次之间的权重系数。
2.设置学习率和最大迭代次数。
3.迭代训练网络:重复以下步骤直到满足停止条件为止。
a)根据当前样本的输入信号,通过前向传播算法计算输出结果。
c)根据误差信号,通过反向传播算法更新网络的权重系数。
4.测试网络:使用独立的测试数据集,通过前向传播算法计算网络的输出结果,评估网络的泛化能力。
三、BP神经网络算法示例程序下面给出一个简单的使用Python编写的BP神经网络算法示例程序。
```pythonimport numpy as npclass BPNeuralNetwork:def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.W1 = np.random.randn(input_dim, hidden_dim)self.W2 = np.random.randn(hidden_dim, output_dim)def sigmoid(self, x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(self, x):return x * (1 - x)def forward_propagation(self, X):self.z2 = np.dot(X, self.W1)self.a2 = self.sigmoid(self.z2)self.z3 = np.dot(self.a2, self.W2)self.y_hat = self.sigmoid(self.z3)return self.y_hatdef backward_propagation(self, X, y, lr):self.loss = y - self.y_hatdelta3 = self.loss * self.sigmoid_derivative(self.y_hat) dW2 = np.dot(self.a2.T, delta3)delta2 = np.dot(delta3, self.W2.T) *self.sigmoid_derivative(self.a2)dW1 = np.dot(X.T, delta2)self.W2 += lr * dW2self.W1 += lr * dW1def train(self, X, y, lr=0.1, epochs=1000):for i in range(epochs):y_hat = self.forward_propagation(X)self.backward_propagation(X, y, lr)def predict(self, X):return np.round(self.forward_propagation(X))#示例用法X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])y = np.array([[0], [1], [1], [0]])nn = BPNeuralNetwork(2, 2, 1)print("预测结果:")print(nn.predict(X))```以上是一个简单的BP神经网络算法示例程序,用于训练一个XOR逻辑门的分类模型。
B P神经网络算法原理BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。
此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
一 BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
(1)节点输出模型隐节点输出模型:O j=f(∑W ij×X i-q j) (1)输出节点输出模型:Y k=f(∑T jk×O j-q k) (2)f-非线形作用函数;q -神经单元阈值。
(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1+e-x) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数: E p =1/2×∑(t pi -O pi )2 (4)t pi - i 节点的期望输出值;O pi -i 节点计算输出值。
(4)自学习模型神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵W ij 的设定和误差修正过程。
BP 网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。
自学习模型为△W ij (n+1)= h×Фi ×O j +a×△W ij (n) (5)h -学习因子;Фi -输出节点i 的计算误差;O j -输出节点j 的计算输出;a-动量因子。
二 BP 网络模型的缺陷分析及优化策略(1)学习因子h 的优化采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。
bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。
2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。
5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。
实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。
经过训练,我们得到了权值矩阵和偏置向量。
当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。
2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。
5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。
这就是BP神经网络算法的基本流程。
在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。
但是,上述流程是BP神经网络算法的基本框架。
bp神经网络算法原理BP神经网络算法(Backpropagation algorithm)是一种监督学习的神经网络算法,其目的是通过调整神经网络的权重和偏置来实现误差的最小化。
BP神经网络算法基于梯度下降和链式法则,在网络的前向传播和反向传播过程中进行参数的更新。
在前向传播过程中,输入样本通过网络的各个神经元计算,直到达到输出层。
每个神经元都会对上一层的输入进行加权求和,并经过一个非线性激活函数得到输出。
前向传播的结果即为网络的输出。
在反向传播过程中,首先需要计算网络的输出误差。
误差是实际输出与期望输出的差异。
然后,从输出层开始,沿着网络的反方向,通过链式法则计算每个神经元的误差贡献,并将误差从输出层反向传播到输入层。
每个神经元根据自身的误差贡献,对权重和偏置进行调整。
这一过程可以看作是通过梯度下降来调整网络参数,以最小化误差。
具体而言,对于每个样本,BP神经网络算法通过以下步骤来更新网络的参数:1. 前向传播:将输入样本通过网络,计算得到网络的输出。
2. 计算误差:将网络的输出与期望输出进行比较,计算得到输出误差。
3. 反向传播:从输出层开始,根据链式法则计算每个神经元的误差贡献,并将误差沿着网络反向传播到输入层。
4. 参数更新:根据每个神经元的误差贡献,使用梯度下降方法更新神经元的权重和偏置。
5. 重复以上步骤,直到达到预设的训练停止条件,例如达到最大迭代次数或误差小于某个阈值。
总的来说,BP神经网络算法通过计算输出误差和通过反向传播调整网络参数的方式,实现对神经网络的训练。
通过不断迭代优化网络的权重和偏置,使得网络能够更准确地进行分类、回归等任务。