沪科版七年级数学上册竞赛试题及详解
- 格式:doc
- 大小:576.50 KB
- 文档页数:23
沪科版七年级数学上册综合测试卷-附含有答案学校: 班级: 姓名: 考号:一、单选题1.﹣5的绝对值是( )A .5B .﹣5C .15-D .152.下列计算中正确的是( )A .-4+6=2B .-3-3=0C .111326-+=- D .3154312⎛⎫-+-=- ⎪⎝⎭ 3.如图, OA 为北偏东44︒方向90AOB ∠=︒,则OB 的方向为( )A .南偏东46︒B .南偏东44︒C .南偏西44︒D .北偏东46︒4.下列说法中,正确的是( )A .非负数就是自然数B .正有理数和负有理数组成全体有理数C .0.7既不是整数也不是分数,因此它不 是有理数D .0是最小的非负整数,它既不是正数,也不是负数5.不改变原式的值,将()()()6372-+--+-中的减法改成加法,并写成省略加号的形式的是( )A .6372--++B .6372---C .6372-+-D .6372+--6.下列平面图形中,经过折叠不能围成正方体的是( )A .B .C .D .7.下列近似数的结论错误的是( )A .0.1 (精确到0.1)B .0.05 (精确到百分位)C .0.50 (精确到百分位)D .0.100 (精确到0.1)8.甲数是7,乙数比甲数的相反数大3.则这两个数的和是 ( )A .-3B .3C .-10D .119.如图,∠AOD -∠AOC 等于( )A .∠AOCB .∠BOC C .∠BOD D .∠COD10. 下列各对数中,相等的一对数是( )A .(-2)3与-23B .-22与(-2)2C .-(-3)与-|-3|D .23与223⎛⎫ ⎪⎝⎭11.现有四种说法:其中正确的有( )个①几个有理数相乘,当负因数有奇数个时,积为负;②若x <0,则|x|=﹣x ;③几个有理数相乘,当积为负时,负因数有奇数个;④若|x|=﹣x ,则x <0. A .1个B .2个C .3个D .4个12.把1400元的奖金按两种奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获一等奖的学生有x 人,则下列方程错误的是( ) A .()2005050221400x -+⨯= B .14002002250xx -+=C .()50200221400x x +-=D .()20050221400x x +-=13.2022年9月,某校学生会以“心连心向未来”为主题,举办了庆祝香地回归25周年征文活动,选派20名学生会成员对120篇征文进行分类 ,现将20名学生会成员分为三组,若第一、二、三小组每人分别负责8 、6、5篇征文,且每组至少有2人,则学生会成员分组方案有( ) A .4种B .5种C .8种D .9种14.如图1是三棱柱,它有6个顶点,9条棱,5个面;图2是四棱柱,它有8个顶点,12条棱,6个面;图3是五棱柱,它有10个顶点,15条棱,7个面…,按此规律下去,n 棱柱的顶点数、棱数、面数分别是( )A .(n+2)个顶点,2n 条棱,3n 个面B .2n 个顶点,(n+2)条棱,3n 个面C .2n 个顶点,3n 条棱,(n+2)个面D .3n 个顶点,2n 条棱,(n+2)个面二、填空题15.计算 22--= .16.如果 218x += ,那么 42x += . 17.已知实数a ,b ,c 满足a +b =ab =c ,有下列结论:①若c≠0,则11a b+ =1; ②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a ,b ,c 中只有两个数相等,则a +b +c =8. 其中正确的是 .(把所有正确结论的序号都选上)18.已知313m x y +-与1n m x y -是同类项,则n m 的结果为 .19.如图,线段AB=10,BC=6,点D 上线段AC 的中点,则线段AD 的长为 .20.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是120千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区200户居民这一天投放的可回收垃圾共约 千克.21.已知103=1000,113=1331,123=1728,133=2197,143=2744,153=3375,…,203=8000,213=9261,223=10648,233=12167,243=13824,253=15625,…,则 3=110592.三、计算题22.(1)134.5622⎛⎫-++- ⎪⎝⎭(2)1336442⎛⎫⎛⎫÷⨯-÷- ⎪ ⎪⎝⎭⎝⎭(3)31(24)120.7583⎛⎫-⨯+- ⎪⎝⎭(4)321161422⎛⎫-⨯--÷- ⎪⎝⎭23.化简后再求值:x+2(3y 2﹣2x )﹣4(2x ﹣y 2),其中x=2,y=﹣1.四、解答题24.一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5米到达小颖家,然后向西走了10千米到达小明家,最后回到超市. (1)小明家距小彬家多远? (2)货车一共行驶了多少千米?(3)货车每千米耗油0.2升,这次共耗油多少升?25.用直尺画数轴时,数轴上的点A ,B ,C 分别代表数字a ,b ,c ,已知AB 8=,BC 3=如图所示,设点p a b c =++,该轴的原点为O .(1)若点A 所表示的数是1-,则点C 所表示的数是 ;(2)若点A ,B 所表示的数互为相反数,则点C 所表示的数是 ,此时p 的值为 ;(3)若数轴上点C 到原点的距离为4,求p 的值.26.设关于x ,y 的二元一次方程ax+by=﹣2的有两组解为11x y =-⎧⎨=⎩和22x y =⎧⎨=⎩,请你再写一组该方程组的解.27.关于x 、y 的方程组 {y +2x =mx +2y =5m的解满足x+y=6,求m 的值.28.如图,已知线段AB 和CD 的公共部分BD 1134AB CD == ,线段AB 、CD 的中点E 、F 之间的距离是25cm ,试求AB 、CD 的长.29.如图,已知直线AB 、CD 、EF 相交于点O ,∠2=2∠1,∠3=3∠2,求∠DOE 的度数.30.有大小两种货车,2辆大货车与3辆小货车一次可以运货16.5吨,1辆大货车与1辆小货车一次可以运货7吨.大货车与小货车每辆一次各运货多少吨?五、综合题31.据报道,某市受台风影响,10月6日的水位是2.83米,由于种种原因,水位一度超过警戒线。
沪科版七年级上册数学 第一单元有理数测试题班级_______ 姓名____________ 学号_______评价________一、填空(共20分,每空1分)1、在215-,0,-(-1.5),-│-5│,2,411,24中,整数是 。
2、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是-10米,则地势最高的与地势最低的相差__________米.3、在数轴上距原点3个单位长度的点表示的数是___________。
4、已知P 是数轴上的一点4-,把P 点向左移动3个单位后再向右移1个单位长度,那么P 点表示的数是______________.5、311-的相反数是_______,它的倒数是_______,它的绝对值是______。
6、既不是正数也不是负数的数是_________,其相反数是________。
7、最大的负整数是 _________,最小的正整数是_________ . 8、若│x -1│+(y+2)2=0,则x -y= 。
9、()1-2003+()20041-=______________。
10、有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请你写出一个成功的算式:___________________________=24。
11、计算:1– 2 + 3 – 4 +5 – 6 +······+2003– 2004 = 。
12、观察下列数据,按某种规律在横线上填上适当的数:1,43-,95,167-,259, ,… 13、一列数71,72,73 … 723,其中个位数是3的有 个。
14、760340(精确到千位)≈ ;640。
9(保留两个有效数字)≈ 。
15、北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为 . 二、选择题(共20分)1、在211-,2.1,2-,0 ,()2--中,负数的个数有( )A.2个B.3个C.4个D.5个 2、比较4.2-, 5.0-, ()2-- ,3-的大小,下列正确的( )。
七年级上册数学竞赛题和经典题一、竞赛题与经典题。
1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。
再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。
然后进行除法运算32÷4 = 8。
最后进行加法运算-8+8 = 0。
2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。
所以化简结果为-2a + b。
3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。
再移项,3x-2x=6 + 3+2。
合并同类项得x = 11。
4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。
解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。
所以AB = 5-( 3)=5 + 3 = 8。
5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。
解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。
又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。
6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。
然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。
最后进行减法运算2-2 = 0。
7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。
2023年2月9日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、填空题1.长方体和正方体都有________个面,________条棱,________个顶点.【答案】6128【分析】试题分析:根据长方体和正方体的特征即可得到结果.长方体和正方体由6个面,12条棱,8个顶点.考点:本题考查的是长方体和正方体的特征点评:解答本题的关键是熟记长方体和正方体由6个面,12条棱,8个顶点.【详解】请在此输入详解!2.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是_________.【答案】11x+30【分析】先表示出十位上的数字,再根据数的表示方法列式即可.【详解】解:∵个位数字是x,十位数字比个位数字大3,∵十位数字是x+3,这个两位数为:10(x+3)+x=1130x+;故答案为:1130x+.【点睛】本题考查了列代数式,是基础题,主要是数的表示方法,要注意数位上的数字乘以数位.3.将方程112128x x+-=去分母时,方程两边同乘最小的正整数m,则式子2019m-的值是________.4.化简:5(x -2y)-4(x -2y)=___. 【答案】x -2y【分析】原式去括号合并即可得到结果.【详解】原式=5x −10y −4x +8y =x −2y .故答案为x−2y.【点睛】本题考查整式的加减.5.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.6.计算:﹣x 2﹣2x 2=___.【答案】23x -【分析】直接利用合并同类项法则计算即可,合并同类项法则是:字母和字母的指数不变,系数相加.【详解】解:﹣x 2﹣2x 223x =-,故答案为:23x -【点睛】本题主要考查合并同类项,熟练掌握合并同类项法则是解题的关键. 7.30︒的余角是________°.【答案】60︒【分析】从余角的定义出发:两个角和为90︒,则这两个角互余;由此可得解.【详解】解:由两个角和为90︒,则这两个角互余可得:︒-︒=︒903060故答案为60︒.【点睛】本题考查余角的定义;关键在于知道两个角和为90︒,则这两个角互余.8.一个整数具有下列特征:∵它在数轴上表示的点位于原点左边;∵它大于3-;∵它是负偶数,则这个数是__.【答案】2--,负偶数几个特点,即可求出答案.【分析】根据原点左边,大于3【详解】解:∵在数轴上表示的点位于原点左边,∵此数一定是负数,∵它大于3-,∵此数一定在0和3-之间,∵是负偶数,∵这个数是:2-,故答案为:2-.【点睛】本题主要考查数轴上有理数的特点,理解和掌握数轴上有理数的位置关系是解题的关键.9.已知圆柱底面半径为4cm,母线长为10cm,则其侧面展开图的面积是________ 2cm.【答案】80π【分析】根据圆柱的侧面积等于2πrl计算即可.【详解】2π×4×10=80π.故答案为80π.【点睛】本题考查了圆柱的侧面积的计算,牢记圆柱的侧面积公式是解答本题的关键.如果圆柱的底面半径为r,母线长为l,那么圆柱的侧面积等于2πrl.10.当x=____时,代数式﹣2x+1的值是0.【答案】【详解】试题分析:根据题意列出方程,求出方程的解即可得到x的值.解:根据题意得:﹣2x+1=0,移项合并得:2x=1,解得:x=,故答案为 考点:解一元一次方程. 11.如果单项式323a x y +与单项式14b xy --的和还是单项式,那么b a 的值是______.【答案】8-【分析】先根据题意判断出单项式323a x y +与单项式14b xy --是同类项,从而依据同类项概念得出a 、b 的值,继而代入计算可得.【详解】解:∵单项式323a x y +与单项式14b xy --的和还是单项式,∵单项式323a x y +与单项式14b xy --是同类项,则31a +=,21b =-,解得2a =-,3b =,∵()328b a =-=-,故答案为:8-.【点睛】本题主要考查了同类项的定义,解题的关键是掌握同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.12.定义一种新运算:,那么_________. 【答案】2【详解】试题分析:根据题意可把这种新运算转化为一般的有理数运算,中相当于a=4,b=-1,所以=1+1=2. 考点:有理数的运算.13.比较大小:38°15′_____38.15°(选填“>”“<”“=”).【答案】>【分析】先统一单位得38.15°=38°9′,,再比较大小即可得.【详解】∵0.15°=0.15×60′=9′,∵38.15°=38°9′,∵38°15′>38°9′,即38°15′>38.15°,故答案为:>.【点睛】本题考查了角的比较,解题的关键是统一单位.14.当k =_____时,代数式x 2+|3k |xy ﹣4y 2﹣xy ﹣8中不含xy 项.15.12010-的相反数是_________;若5a =,则=a __________.16.已知关于x ,y 的方程组23,32 1.x y k x y k +=⎧⎨+=+⎩①②,的解的和是k -,则k =________.17.如图,已知::3:2:4AB BC CD =,E 、F 分别是AB 和CD 中点,且 5.5cm EF =,则AD =________.【答案】9cm##9厘米18.数轴上点A表示数﹣1,点B表示数2,该数轴上的点C满足条件CA=2CB,则点C表示的数为_____.∵CA =2CB ,∵CB =AB =3,∵OC =OB +BC =2+3=5,∵点C 表示的数为5;故答案为:1或5.【点睛】此题考查了数轴的问题,解题的关键是分两种情况根据数轴的性质求解. 19.已知5x y +=,2xy =,计算322xy x y --=______. 【答案】-4【分析】将322xy x y --变形为()32+xy x y -,代入求值即可.【详解】解:322xy x y --()=32+2xy x y -()32+xy x y =-当5x y +=,2xy =时,原式3225=4=⨯-⨯-.故答案为4-.【点睛】本题考查了代数式的变形,能正确的变形并且能整体代入即可得到答案. 20.当2a 3(b 4)++-取得最小值时,(a+1)b 的值是__________21.如图,这是一个运算程序示意图,不论输入x 的值为多大,输出y 的值总是一个定值(不变的值),则a+b=_________【答案】3.【分析】首先根据运算程序示意图,得到运算的代数式,再根据输出值为定值,可知代数式的值与x 无关,则合并后的代数式中x 的系数为0,据此可得a+b 的值.【详解】由程序示意图可得:()()33532=-+-+=-++⎡⎤⎣⎦y x a b x a b x∵y 为定值,∵代数式()32-++⎡⎤⎣⎦a b x 的值与x 无关∵()3=0-+a b ,∵=3a b + 故答案为:3.【点睛】本题考查运算程序图和代数式值的无关问题,理解输出值为定值即代数式的值与x 无关是解题的关键.22.观察:从2开始,连续的偶数相加,它们的和的情况如图所示,则162+164+166+…+400的值为________.【答案】33 720【分析】观察算式可找出其中的规律,然后依据规律进行计算即可.【详解】∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∵n 个最小的连续偶数相加时,S=n (n+1);∵162+164+166+…+400=(2+4+6+…+400)-(2+4+6+…+160),=200×201-80×81,=40200-6480,=33720.故答案为:33720【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.若关于x的一元一次不等式组有解,则m的取值范围为.24.如图,是一个数表,现用一个长方形在数表中任意框出4个数,则当a______.+++=时,=80a b c d【答案】17【分析】根据方框的数的关系用a表示出b、c、d,然后列出方程求解即可.【详解】解:由图可知,b=a+1,c=a+5,d=a+6,∵a+b+c+d=80,∵a+(a+1)+(a+5)+(a+6)=80,解得:a=17.故答案为:17.【点睛】本题主要考查数字变化规律,一元一次方程的应用,观察图形得到a、b、c、d四个数之间的关系是解题的关键.25.如果方程134aax-+=是关于x的一元一次方程,则a的值为______.26.苏果超市一件商品原价100元,提高20%销售,在今年国庆期间搞促销,打折优惠后价格为84元,这件商品打________折.【答案】7【详解】试题分析:解:设这件商品打x折,根据题意可得:100(1+20%)x=84,解方程得:x=0.7,所以这件商品打7折.考点:一元一次方程的应用点评:首先设这件商品打x折,列出关于x的一元一次方程,解一元一次方程求出结果.27.已知|x|=5,y2=9,且|x﹣y|=y﹣x,则x﹣y=_____.【答案】-8或-2【分析】根据绝对值的性质和有理数的乘方求出x、y,再根据负数的绝对值等于它的相反数判断出x-y<0,可确定x值,然后求解即可.【详解】∵|x|=5,y2=9,∵x=±5,y=±3,∵|x﹣y|=y﹣x,∵x<y,∵x=-5,当x=-5,y=3时,x-y=-5-3=-8,当x=-5,y=-3时,x-y=-5-(-3)=-2,故答案为-8或-2【点睛】本题考查了有理数的减法,绝对值的性质,有理数的乘方,判断出x 、y 的对应情况并熟记运算法则和性质是解题的关键.28.如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,若2445EOC '∠=︒,则∠BOE 的度数为_________;BOD ∠度数为__________.【答案】 15515'︒ 4930'︒【详解】试题解析:∵OE 平分∵AOC ,∵EOC='2445︒,∵∵AOC=2∵EOC='2445︒×2='4930︒.由对顶角相等可知:∵BOD=∵AOC='4930︒.∵∵BOC=180°-∵BOD=180°-'4930︒='13030︒.∵BOE ∠=∵BOC+∵EOC='13030︒+'2445︒='15515︒故答案为'15515︒;'4930︒.二、解答题29.已知|a |=3,|b |=3,a 、b 异号,求a +b 的值.【详解】解:3a =,互为相反数,【点睛】本题考查了相反数的定义,解答本题的关键是绝对值相等,符号相反的两个30.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)【答案】提前4天【分析】根据实际完成的效率比上计划的效率列出比例式,解比例式即可求解.【详解】解:设实际可以提前x 天完成.31.解方程组25 323 x yx y-=-⎧⎨+=⎩【答案】13 xy=-⎧⎨=⎩【分析】∵×2+∵即可消去y求得x的值,然后把x的值代入∵即可求得y的值,从而得到方程组的解.【详解】解:25 323 x yx y-=-⎧⎨+=⎩①②∵×2+∵得,7x=-7∵x=-1,把x=-1代入∵得,y=3,∵方程组的解为:13 xy=-⎧⎨=⎩.【点睛】本题主要考查解二元一次方程组的能力,解题的关键是熟练掌握加减消元法. 32.如图,图1的瓶子是由上、下相通的圆柱体组成的,里面盛满了水,如果将这个瓶子中的水全部倒入图2的圆柱体杯子中,那么需要多少个这样的杯子?33.某便利店在周年店庆活动中,用800元购进了A 、B 两种瓶装果汁饮料共210瓶,这两种饮料的进价、售价如图所示:(1)这两种饮料各购进多少瓶?(2)若该便利店按售价售完这批饮料,获得的利润是多少元?(3)如果这批饮料是在一天之内按照售价销售完成的,除了进货成本,便利店每天的其他销售费用是0.2元/瓶,那么便利店销售这批饮料所获得的利润是多少? 【答案】(1)A 种饮料购进100瓶,B 种饮料购进110瓶(2)680元(3)638元【分析】(1)设A 种饮料购进x 瓶,则B 种饮料购进(210x -)瓶,根据题意列出一元一次方程,解方程即可求解;(2)根据利润等于售价减去成本,列式进行计算即可求解;(3)根据利润等于售价减去成本再减去其他销售费用是0.2元/瓶,列式进行计算即可求解.【详解】(1)解:设A 种饮料购进x 瓶,则B 种饮料购进(210x -)瓶,根据题意得:2.55(210x x +-)=800,解得100x =,210210100110x ∴-=-=,A ∴种饮料购进100瓶,B 种饮料购进110瓶;(2)61008110800⨯+⨯-600880800=+-680=(元),∴该便利店按售价售完这批饮料,获得的利润是680元;(3)610081108002100.2638⨯+⨯--⨯=(元),∴便利店销售这批饮料获得的利润是638元.【点睛】本题考查了一元一次方程的应用,有理数的混合运算的应用,根据题意列出方程与算式是解题的关键.34.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东为正,某天从地出发到收工时,行走记录如下:(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问:收工时检修小组距离A有多远?在A地的哪一边?(2)若检修小组所乘的汽车每一百千米平均耗油8升,则汽车从A地出发到收工大约耗油多少升?【答案】(1)收工时检修小组在A地的东边,距离A地36千米;(2)汽车站从A地出35.计算:(1)-14 -5+30-2(2)-8÷(-2)×1 4【答案】(1)9;(2)1【分析】(1)根据有理数的加减法运算法则进行计算即可;(2)根据有理数的乘除法运算法则进行计算即可.36.问题背景数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数点之间的内在联系,它是“数形结合”的基础,我们知道40|4|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子73-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离,即若点A 、B 在数轴上分别表示有理数a 、b ,则A 、B 之间的距离可表示为a b -.问题探究(1)若31x -=,则x = .(2)若31x x -=+,则x = .(3)若318x x -++=,则x = .问题解决(4)若在数轴上有两个点M 、N ,它们在数轴上的点表示的数分别为m 、n ,满足9|52|m m ++-=且|23|6n n n ++++-的值最小,则两个点M 、N 之间的距离是 .【答案】(1)4x =或2x =(2)1x =(3)5x =或3x =-(4)5或4【分析】(1)根据绝对值的意义得出31x -=或31x -=-,求出x 的值即可;37.平面直角坐标系xOy 中, A (a ,0),B (4,b ),且a 、b 满足032b a +--=.(1)填空:=a ,b = ;(2)如图1,在x 轴上有点C ,,当6ABC S =时,求点C 的坐标;(3)如图2,将线段BA 平移得到线段OD ,P (n ,1-)是线段OD 上一点,求n 的值.ODN OPM S S S =+梯形(1123122⨯⨯=⨯⨯-解得23n =-.38.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.(1)求1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)该物流公司现有80吨货物需要运送,计划同时租用A 型车a 辆,B 型车b 辆(每种车辆至少1辆且A 型车数量少于B 型车),一次运完,且恰好每辆车都装满货物.若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.【答案】(1)1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨;(2)共有2种租车方案,方案1:租用4辆A 型车,1辆17型车;方案2:租用8辆A 型车,4辆14型车;方案1最省钱,此时最少租车费为2440元【分析】(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于 x ,y 的二元一次方程组,解之即可得出结论;(2)根据一次运货31吨,即可得出关于a ,b 的二元一次方程,结合a ,b 均为非负整数,即可得出各租车方案,利用总租车费用=每辆车的租车费用×租车数量,可分别求出各租车方案所需租车费用,比较后即可得出结论.39.解方程组:(1)(2).【答案】(1);(2).【详解】试题分析:(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解:(1), ∵×2﹣∵得:3y=15,即y=5,把y=5代入∵得:x=,则方程组的解为;(2)方程组整理得:,∵×2+∵得:11x=22,即x=2,把x=2代入∵得:y=3,则方程组的解为. 考点:解二元一次方程组.40.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).41.李伟从家里骑摩托车到火车站,若每小时行驶30千米,则比火车开车时间早到15分钟;若每小时行驶18千米,则比火车开车时间迟到15分钟,那么李伟家到火车站的路程为多少千米?42.观察下列单项式:x -,23x ,35x -,47x ,⋅⋅⋅,1937x -,2039x ,⋅⋅⋅写出第n 个单项式,为了解决这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少?系数符号的规律是什么?系数绝对值规律是什么? (2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么? (4)请你根据猜想,写出第2018个,第2019个单项式.【答案】(1) 这组单项式的系数依次为1-,3,5-,7,…,-37,39…;奇次项的系数符号为负号,偶此项的系数符号为正号;系数绝对值为:21n -;(2) 单项式的次数的规律是从1开始的连续自然数;(3)第n 个单项式是:()()121nn n x --;(4)第2018个单项式是20184035x ,第2019个单项式是20194037x -【分析】(1)根据单项式系数的定义可写出单项式的系数;观察所给单项式,可直接得出系数符号的规律以及系数绝对值的规律;(2)观察所给单项式,可知次数的规律是从1开始的连续自然数; (3)根据系数符号的规律、系数绝对值的规律和次数的规律,总结即可; (4)利用(3)中所求即可得出答案.【详解】解:(1)观察所给单项式可知:这组单项式的系数依次为1-,3,5-,7,…,-37,39…;奇次项的系数符号为负号,偶此项的系数符号为正号;系数绝对值为:21n -;(2)这组单项式的次数的规律是从1开始的连续自然数;(3)根据系数符号的规律、系数绝对值的规律和次数的规律可知,第n 个单项式是:()()121nn n x --;(4)由规律可知:第2018个单项式是20184035x ,第2019个单项式是20194037x -.【点睛】此题主要考查了单项式的变化规律问题,得出次数与系数的变化规律是解题关键.43.计算与化简:(1)22|18(3)2|4-+---⨯÷; (2)2141()(6)7()492-⨯-+÷-.44.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯-=56.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则.以及利用乘法分配律进行计算.45.(1)如图,点C 在线段AB 上,线段6cm 4cm AC BC ==,,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.(2)对于(1),如果叙述为:“已知线段6cm 4cm AC BC ==,,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.”,结果会有变化吗?如果有,画出图形,求出结果.时,注意“线段”,“直线”等关键词,注意分类讨论是解题的关键. 46.解方程组(1)20328x y x y -=⎧⎨+=⎩;(2)7423624x y x y +=⎧⎨-=⎩.【答案】(1)21x y =⎧⎨=⎩;(2)23x y =⎧⎨=-⎩. 【分析】(1)方程组中的两个方程相加,采用加减消元法即可先消去y ,求解x 后再求解y ;(2)方程组中上下两个方程分别乘以3和乘以2,运用加减消元法即可先消去y ,求解x 后再求解y.【详解】(1)20?328? x y x y -=⎧⎨+=⎩①②,∵+∵得:4x=8,即x=2, 将x=2代入∵得:y=1,则方程组的解为21x y =⎧⎨=⎩;(2)742?3624? x y x y +=⎧⎨-=⎩①②,∵×3+∵×2得:27x=54,即x=2, 将x=2代入∵得:y=﹣3, 则方程组的解为23x y =⎧⎨=-⎩.【点睛】本题考查了运用加减消元法解二元一次方程组.47.小明想调查小区居民对“节约用水知识”的了解情况,600份调查表的统计结果如下:(1)请你计算出每一种类别的人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.【答案】(1)40%、25%、20%、15%;(2)扇形统计图如图所示:;(3)答案不唯一,合理即可【分析】(1)由每个的人数除以总人数,再乘以100%,即可求得结果;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形统计图即可;(3)根据扇形统计图的特征即可得到答案.【详解】(1)了解节水知识并有节水意识人数的百分比:,不了解节水知识但有节水意识人数的百分比:,了解节水知识但没有节水意识人数的百分比:,不了解节水知识也没有节水意识人数的百分比:;(2)各类人数对应扇形所对应圆心角:了解节水知识并有节水意识:,不了解节水知识但有节水意识:,了解节水知识但没有节水意识:,不了解节水知识也没有节水意识:,扇形统计图如图所示:;(3)答案不唯一,合理即可,如:没有节水意识的人数较多,但不足一半.【点睛】解答本题的关键是熟练掌握扇形统计图的特征:扇形统计图直接反映部分占总体的百分比大小.。
上海初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.六位数由三位数重复构成,如256256,或678678等等,这类数能被何数整除(15届江苏初一2试)六位数六位数A.11;B.101;C.13;D.1001.2.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是A.75分;B.74分;C.72分;D.77分.3.一个数被10除余9,被9除余8,被8除余7,…,被2除余1,则此数为A.59 ;B.1259;C.2519;D.非以上结论.4.0.000000375与下列数不等的是A.;B.;C.;D..5.若1+2+3+…+k之和为一完全平方,若n小于100,则k可能的值为A.8;B.1,8 ;C.8,49;D.1,8,49.6.若,则z等于(15届江苏初二1试)若A.;B.;C.;D..7.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
则n最小为A.7;B.9;C.10 ;D.11.8.如表所示,则x与y的关系式为()+x+1C.y=(x2+x+1)(x-1) D.非以上结论9.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A.1 ;B.2;C.3;D.4.二、填空题1.计算: .2.(17届江苏初一1试)计算等式,式中的应为 .3.三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于 .4.将1,2,3,…,49,50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,则这10个中位数的最大值是 .5.(15届江苏初一1试)时钟在2点时,分针与时针所夹的角为60°.从0时到3时,会有个时刻,分针与时针也能构成60°的角.6.图中阴影部分占(15届江苏初二1试)图中图形的(填几分之几).7.如图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长为1,则这个六边形的周长是 (17届江苏初一1试)如图如 .8.已知,点O在三角形内,且,则的度数是(17届江苏初一1试) 度.9.(17届江苏初三)在在在4点钟与5点钟之间,分钟与时钟成一条直线,那么此时时间是 .10.(15届江苏初一1试)一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k (k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.上海初一初中数学竞赛测试答案及解析一、选择题1.六位数由三位数重复构成,如256256,或678678等等,这类数能被何数整除(15届江苏初一2试)六位数六位数A.11;B.101;C.13;D.1001.【答案】D【解析】析:六位数由三位数重复构成,说明这类数一定能被此三位数整除,不妨用构成的六位数除以三位数得到的数即所求的数.解答:解:256256÷256=1001,678678÷678=1001,设三位数abc,则重复构成的六位数为abcabc,abcabc÷abc=1001.故选D.点评:此题考查了学生对数的整除性问题的解答与掌握,此题解答的关键是用构成的六位数除以三位数得出要求的数.2.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是A.75分;B.74分;C.72分;D.77分.【答案】B【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:根据题意得:该组数据的平均数==74.故选B.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80,70这四个数的平均数,对平均数的理解不正确.3.一个数被10除余9,被9除余8,被8除余7,…,被2除余1,则此数为A.59 ;B.1259;C.2519;D.非以上结论.【答案】C【解析】分析:这个最小正整数加上1是2、3、4、5、…10的最小公倍数,求得最小公倍数减1即可求得答案.解答:解:由题意可知所求最小正整数是2,3,4,5,…,10的最小公倍数减去1,2,3,4,5,…,10的最小公倍数是实际就是7,8,9,10的最小公倍数为2520,则所求最小数是2520-1=2519.故选C.点评:此题考查了带余数除法,主要利用求几个数的最小公倍数的方法解决问题.4.0.000000375与下列数不等的是A.;B.;C.;D..【答案】D【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.注意小数和分数相互间的转化.解答:解:0.000 000 375=3.75×10-7=3×10-7=≠.故选D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若1+2+3+…+k之和为一完全平方,若n小于100,则k可能的值为A.8;B.1,8 ;C.8,49;D.1,8,49.【答案】D【解析】分析:本题直接求解难度较大,故采用代入法,间接验证.解答:解:∵1+2+3+…+k=k(k+1)∴k(k+1)=n2,当k=1时,则k(k+1)=1,n=1,显然成立.当k=8时,则k(k+1)=36,此时n=6,成立;当k=49时,则k(k+1)=25×49,n=35,成立.故答案为D.点评:本题考查完全平方数.同学们对于做选择题目,采用将选项代入验证的方法,有时候起到事半功倍的效果,本题就是这样,如直接求解,难度非常大,这样求解简单多了.6.若,则z等于(15届江苏初二1试)若A.;B.;C.;D..【答案】D【解析】略7.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
沪科版数学七年级上册1章专训一:有理数的相关概念名师点金:有理数这部分的概念比较多,如有理数的定义、数轴、相反数、绝对值等,这些概念比较难理解,概念与概念之间又容易混淆,加强对概念的理解和辨析尤为重要,而对概念的考查也是常考类型.1111有理数的概念辨析1.下列说法正确的个数是()①0是最小的整数;②一个有理数,不是正数就是负数;③若a是正数,则一a是负数;④自然数一定是正数;⑤整数包括正整数和负整数;⑥非正数就是负数和0.A.0B.1C.2D.32,写出五个有理数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数是非负数;③五个数中必须有质数和分数,这五个数可以是.3.有理数中,最大的负整数为,最小的非负数为.有理数的分类4,下列分类中,错误的是()A.有理数'负有理数、非负有理数B.'正整数、非正整数C.'奇数、偶数D.自然数正整数正整数<整数<5.下列说法中,正确的有()①一个有理数不是整数就是分数;②一个有理数不是正的,就是负的;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1个B.2个C.3个D.4个6.如果按“被3除”来分,整数可分为_______________________三类.7.把下列各数填入相应的大括号内.2355—7, 3.01,—8孕6,0.3,0,2015,—YL39—10%正数]};负分数{};非负整数{}.j套壑至数轴'相反数、绝对值8.下列说法正确的是()A.所有的有理数都可以用数轴上的点来表示B.数轴上的点都用来表示有理数C.正数可用原点右边的点表示,负数可用原点左边的点表示,零不能在数轴上表示D.数轴上一个点可以表示不止一个有理数9.下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等,那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A.1个B.2个C.3个D.4个10.下列各组数互为相反数的是()A.|-(-3)|与|+(+3)|B.—|—3|与+|+3|C.-(-|-3|)与1—(—3)|D.-I-I-3H与—[-(-3)]11.数轴上A,B两点所表示的数如图所示,则A与B之间(不含A,B)的点所表示的数中,互为相反数的整数有()A BI I I【I I I I I I I I.I—-6-5-4-3-2-10123456(弟11题)A.1对B.2对C.3对D.4对12.若a是有理数,则下面说法正确的是()A.|a|一定是正数B.|—a|一定是正数C.—|a|一定是负数D.|a|+l一定是正数13.在数轴上,若点A和点B分别表示互为相反数的两个数(点A在点B 左边),并且这两点间的距离是10,则A,B两点所表示的数分别是.14.若a+2的相反数是一5,则a=.15.绝对值不大于4的非负整数有个.专训二:数轴、相反数、绝对值的应用名师点金:数轴是“数”与“形”结合的工具,有了数轴可以由点读数,也可以由数定点,还可以从几何意义上去理解相反数和绝对值;同时利用数轴可以求相反数,化简绝对值等.总之,这三者之间是相互依存,紧密联系的.点数对应问题题型1数轴上的整数点的问题1.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数有个.^121^302(第[题)2.在数轴上任取一条长为2016?个单位长度的线段,则此线段在数轴上最多能包含的整数点的个数为()A.2017B.2016C.2015D.2014题型2数轴上的点对应的数的确定3.已知数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A,B两点分别对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C所对应的数.相星务化简求值问题4.如图,已知数轴上的点A和点B分别表示互为相反数的两个数a,b,且a<b,A,B两点间的距离为*,求a,b的值.A B«0b(第4题)5.己知|15—a|+|b—12|=0,求2a—b+7的值.6.当a为何值时,|1—a|+2有最小值,并求这个最小值.7.当a为何值时,2—14—a|有最大值,并求这个最大值.8.三个有理数a,b,c在数轴上的对应点的位置如图所示,其中数a,b互为相反数.试求解以下问题:a c b(弟8题)(1)判断a,b,c的正负性;(2)化简|a-b|+2a+|b|.忑里3.实际应用问题9.一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,一11,一13,+3,—12,—18,请问小王将最后一位乘客送到目的地时,一共行驶了多少千米?专训三:与有理数有关的常见题型名师点金:有理数这部分内容比较丰富,要掌握好这些内容,需要从多角度练习,灵活掌握解题方法和技巧,其常见题型有:有理数与数轴、有理数与相反数、有理数与绝对值、有理数与非负性等..遴裂1有理数与数轴1.如图,数轴上所标出的点中,相邻两点间的距离相等,则点A表示的数为()A.30B.50C.60D.80o''1'100―*■(第]题)CAB'一,旧"(第3题)2.A为数轴上表示1的点,将点A在数轴上移动3个单位长度到点B,则点B表示的有理数为()A.-3B.-2C.4D.-2或43.如图,数轴上有三点A,B,C,其中A,B分别表示2,2号,且AB= AC,则点C表示的数为.4.将数轴对折,使表示一3与1的两个点重合,若此时表示一5的点与另一个表示数x的点重合,则x=.5.一只跳蚤在数轴上从原点开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,……依此规律跳下去,当它跳第20次落下时,落点处离原点的距离是个单位长度.痍夷Z有理数与相反数326.在0.75,—/—3,3,0,+5,一3这几个数中,互为相反数的有()A.0对3.1对 C.2对D.3对7.下列说法:①相反数是两个不相等的数;②数轴上原点两旁表示的数互为相反数;③若两数互为相反数,则数轴上表示它们的点到原点的距离相等;④求一个非零数的相反数,就是在这个数前面添上“一”号,其中正确的有()A.1个B.2个C.3个D.4个8.在数轴上点A表示一2,点B与点C是互不重合的两点,且B,C表示的数互为相反数,C与A之间的距离为2,求点B,C所表示的数.:攫碧3.有理数与绝对值9.(中考•包头)若回=一a,则数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧10.如图,数轴上。
一、选择题3、255,344,533,622这四个数中最小的数是……………………………….. ( )A. 255B. 344C. 533D. 6224、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 …………………………….. ( ).A 、21B 、24C 、33D 、375、有理数的大小关系如图2所示,则下列式子中一定成立的是…… ( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )。
A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………………………………………………… ( )A 、1B 、2C 、3D 、48、 方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………………… ( )A. a>-1B. a>1C. a ≥-1D. a ≥1 9、122-+-++x x x 的最小值是…………………………………………………… ( )A. 5B.4C.3D. 210、银行存入30000元人民币,存期一年,年利率为1.98%,到期应交纳所获利息的20%的利息税,那么到期取款并交利息税后,可取回( )A 、30594B 、30475.8元C 、30475.2元D 、30198元二、填空题11、定义a*b=ab+a+b,若3*x=27,则x 的值是_____。
2024年沪科版数学初一上学期复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?选项:A、26厘米B、30厘米C、40厘米D、50厘米2、一个数的3倍比它的2倍多4,这个数是多少?选项:A、2B、3C、4D、63、已知一个等腰三角形的底边长为8厘米,腰长为10厘米,则该三角形的面积是()A、40平方厘米B、32平方厘米C、48平方厘米D、64平方厘米4、若一个数的平方等于25,则这个数是()A、5或-5B、5C、-5D、05、已知一个长方形的长是10厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A. 20厘米B. 25厘米C. 30厘米D. 50厘米6、一个班级有40名学生,其中男生人数是女生人数的3/4,那么这个班级男生有多少人?A. 15人B. 20人C. 25人D. 30人7、题目:下列数中,是质数的是()A、18B、23C、21D、178、题目:若a、b是方程2x - 5 = 3的解,则a + b的值为()A、7B、-4C、2D、89、一个长方形的长是6厘米,宽是宽的1/2,求长方形的周长。
选项:A. 12厘米B. 18厘米C. 20厘米D. 24厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为8厘米,腰长为10厘米,则这个三角形的周长为______ 厘米。
2、已知直线y = 3x + 1与y轴的交点为A,与x轴的交点为B,则线段AB的长度为 ______ 。
3、若a=2,b=3,则a²+b²的值为 ______ 。
4、一个长方形的长是a厘米,宽是b厘米,则它的面积S可以用公式 ______ 表示。
5、已知一个等差数列的前三项分别是2,5,8,则该数列的公差为 ______ 。
三、解答题(本大题有7小题,第1小题7分,后面每小题8分,共55分)第一题已知函数f(x)=√x2−4x+3,求函数f(x)的定义域。
2023-2024学年沪科版七年级数学上册
《第1章有理数》自主达标测试题一、单选题(满分32分)
二、填空题(满分32分)
三、解答题(满分56分)
17.在数轴上表示下列数字:―1
,
2来.
18.把以下各数填入相应的大括号里
参考答案
用“<”把它们连接为:―|―2|<―1
2<0<2
3
<(―2)2.
18.解:+|-6|=6;-1
45
=-1
1024
;-72=-49
23.(1)解:当a=―3,b=―2时,a―b=―1,d=1;
当a=3,b=―1时,a―b=4,d=4;
故答案为:―1,1;4,4;
(2)解:由题可得,d与a―b之间的数量关系是d=|a―b|,
故答案为:d=|a―b|;
(3)解:∵式子|x+2|表示A、B两点之间的距离,而|x+2|=|x―(―2)|,
∴点B表示的数是―2,
故答案为:―2;
(4)∵|x+2|+|x―3|=5表示数轴上与表示―2的点和表示3的点的距离之和为5,∴―2≤x≤3,
∴整数x=―2,―1,0,1,2,3,
故答案为:―2,―1,0,1,2,3;
(5)解:式子|x+7|+|x―8|的几何意义为数轴上表示数x的点与表示―7的点、表示3的点的距离之和,
∴当―7≤x≤8时,式子|x+7|+|x―8|的最小值是8―(―7)=15.。
沪科版数学七年级上册综合训练50题(填空、解答题)一、填空题1.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,则第n 个图案中正三角形的个数为_____.2.数轴上表示-2的点先向右移动3个单位,再向左移动5个单位,则此时该点表示的数是___.3.一个角是 25°30′,则它的补角为____________度. 4.若13n ab +-与143m a b -的和仍是单项式,则m n =_______.5.关于x 的一元一次方程(2m ﹣6)x ﹣2=0 ,x =1是一元一次方程的解,则m =_____.6.下列各数:12,﹣(﹣3),﹣|﹣4|,0,﹣22,﹣0.01,(﹣1)3,属于负数的有_________个.7.近似数7.2765精确到0.01是______.8.若α与β互余,且α=35°18′,则β=___________. 9.单项式3223a x π-的系数是__________,次数是__________.10.若是同类项,则= ,= .11.有下列判断:①两点确定一条直线,①直线上任意两点都可以表示这条直线;①三点确定一条直线;①过一点有无数条直线,其中错误的是_____(填序号)12.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩,则x -y 的值为_______;13.在CCTV “开心辞典”栏目中,主持人问这样一道题目:“a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a ,b ,c 三数之和是____________.”14.若单项式12m xy +与单项式2313n x y -是同类项,则m n -=__________.15.为了了解5000件商品的质量问题,从中任意抽取100件商品进行试验在这个问题中,样本容量是__________.16.有一个密码系统,其原理为下面的框图所示当输出为-3时,则输入的x=______.17.已知132n x y +-与34y x 是同类项,则n 的值是__________.18.已知代数式22a a -的值是3,则代数式2542a a +-的值为__________. 19.若a ,b 互为相反数,且0ab ≠,c 、d 互为倒数,m 是数轴上到原点的距离为2的点表示的数,则322()3b a b cd m a ⎛⎫++-+ ⎪⎝⎭的值为___________.20.如图所示,点A 在点O 的北偏东50°方向,点B 在点O 的南偏东30°方向上,则AOB ∠=______.21.如图,在长方形ABCD 中,8cm AB =,9cm BC =,点E 是AD 上一点,2AE DE =,点P 从点B 出友,以1cm/s 的速度从点B —C —D —E 匀速运动,设点P运动的时间为ts ,当PCE 的面积为6cm 2时,则t =________.22.大于133-而小于2的所有整数的和是__________.23.规定符号⊗的意义为2a b ab a ⊗=-,那么34-⊗=_________. 24.若13x 2y m 与2x n y 6是同类项,则m+n=______.25.明明带了a 元去书店买了一套《四大名著》,每本名著售价b 元,一套有4本,还剩_______元.如果150a =,36.45b =元,还剩_______元. 26.用“>”或“<”或“=”填空:(1)﹣|﹣9|_____﹣(﹣9); (2)34-_____78-.27.用“①”定义一种新运算:对于任意有理数a 和b ,规定23a b ab a =+☆.如:213133112=⨯+⨯=☆,则()32-=☆_________.28.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 29.下图是一个无盖的长方体盒子的展开图(重叠部分不计),根据图中数据,则该无盖长方体盒子的容积为__.二、解答题30.化简并求值:2(3)4(31)4a b b a ---+--.其中53a b +=. 31.计算: (1(2)|13.32.我们定义一种新运算:*2a b a b ab =-+(等号右边为通常意义的运算): (1)计算()2*3-的值; (2)解方程:132x x *=*. 33.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.34.为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“经济”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书3600册,请你估算“科普”类图书应添置多少册合适?35.先化简,再求值:()22222232324x y xy x y xy xy xy ⎡⎤+---+-⎣⎦,其中2x =,=3y -.36.先化简,再求值:(1)﹣a 2b +(ab 2﹣3a 2b )﹣2(ab 2﹣2a 2b ),其中a =2,b =1; (2)2(a 2﹣b )+3a 2﹣2(a 2+12b ),其中(a 2+m ﹣1)2+|b +m +2|=0.37.有20筐白菜,以每筐25千克为标准,超过或不足的数分别用正、负数来表示.记录如下:(1)这20筐中,最重的一筐比最轻的一筐重 _____千克 (2)与标准重量比较,总计超过或不足多少千克? (3)若售价1.8元,则出售这筐可卖多少元?38.八年级(1)班的学习委员亮亮对本班每位同学每天课外完成数学作业的时间进行了一次统计,并根据收集的数据绘制了如图的统计图(不完整),请你根据图中提供的信息,解答下面的问题:(注:每组数据包括最大值,不包括最小值.)(1)这个班的学生人数为______人; (2)将图①中的统计图补充完整;(3)完成课外数学作业的时间的中位数在______时间段内;(4)如果八年级共有学生500名,请估计八年级学生课外完成数学作业时间超过1.5小时的有多少名?39.在做解方程练习时,有一个方程“y 125-=y +■”,题中■处不清晰,李明问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时整式5(x ﹣1)﹣2(x ﹣2)﹣4的值相同.”依据老师的提示,请你帮李明找到“■”这个有理数,并求出方程的解. 40.计算:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦;(3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭;(4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.41.解方程组:32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩.42.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为___.43.先化简再求值:22223[22( 1.5)]3,3,2x y xy xy x y xy xy x y ---++=-=-其中 44.计算: (1)111410233535⎛⎫-+-- ⎪⎝⎭; (2)()12524236⎛⎫-⨯-+ ⎪⎝⎭.45.在机器人大赛中,机器人沿一条直线爬行.规定向右爬行为正,向左爬行为负,机器人爬行5次,爬行的路程依次为:(单位:厘米)8,4,12,5,10--+-+. (1)机器人最后离出发点多少厘米?在出发点的左边还是右边?(2)若机器人爬行的速度不变,共用了8分钟,问机器人的爬行的速度是多少? 46.如图,438624,AOB BOC '∠=︒∠=,,OD 为AOC ∠的平分线,求BOD ∠的度数47.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.48.解下列方程: (1)13(2)5x x --=- (2)213136x x---=-.参考答案:1.42n +##24n +【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【详解】解:第一个图案正三角形个数为624+=; 第二个图案正三角形个数为244224+++⨯=; 第三个图案正三角形个数为2244234+⨯++⨯=; …;第n 个图案正三角形个数为21442442n n n +⨯+++(﹣)==. 故答案为:42n +.【点睛】此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题. 2.-4【详解】试题分析:在数轴上向右移动几个单位则加上几个单位,向左移动几个单位则减去几个单位. -2+3-5=-4. 考点:数轴上点的表示 3.154.5【分析】利用补角的意义“两角之和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角”.直接列式计算即可. 【详解】1802530'15430'154.5︒-︒=︒=︒. 故答案为:154.5.【点睛】本题考查了补角的概念,如果两个角的和等于180°,就说这两个角互为补角. 4.9【分析】根据同类项的定义可得11m -=,14n +=,解方程可得m 、n 的值,再代入代数式m n 求值即可.【详解】由题意得:11m -=,14n +=, 解得:2m =,3n =, 把2m =,3n =代入m n 中得:239=,故答案为:9.【点睛】本题考查了单项式的定义、同类项等知识,关键是掌握同类项的定义. 5.4【分析】将x =1代入原方程求解即可. 【详解】解:将x =1代入(2m ﹣6)x ﹣2=0,2620m --=,解得:4m =,故答案为:4.【点睛】本题考查一元一次方程的解,熟练掌握解一元一次方程是解题关键. 6.4【分析】根据正负数的定义便可直接解答,即大于0的数为正数,小于0的数为负数,0既不是正数也不是负数.【详解】解:12是正数,﹣(﹣3)=3是正数,﹣|﹣4|=﹣4是负数,0既不是正数也不是负数,﹣22=﹣4是负数,﹣0.01是负数,(﹣1)3=﹣1是负数, 负数共4个. 故答案为:4【点睛】此题考查了正数与负数,解答此题的关键是:正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号. 7.7.28【分析】利用四舍五入法解答,即可求解. 【详解】解:近似数7.2765精确到0.01是7.28. 故答案为:7.28【点睛】本题主要考查运用“四舍五入”法求一个数的近以数,解题的关键是要看清精确到哪一位,就根据它的下一位上数是否满5,再进行四舍五入. 8.5442'︒【分析】根据互为余角的两个角的和等于90°列式计算即可得解. 【详解】①α与β互余,且α=35°18′, ①9035185442β=︒-︒=︒''. 故答案为:5442︒'.【点睛】本题考查了余角和补角,熟记余角的概念是解题的关键.9.23π-5【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】根据单项式定义得:单项式3223a xπ-的系数是23π-,次数是5.故答案为:23π-;5.【点睛】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.3;1【详解】试题分析:解:因为是同类项,所以n=1,3m=9,所以n=1,m=3.考点:同类项的定义点评:本题主要考查了同类项的定义.我们把所含字母相同,相同字母的指数也相等的项叫做同类项.11.①.【分析】根据直线的性质,相交线的定义对各选项分析判断后利用排除法求解.【详解】①两点确定一条直线,故正确;②直线上任意两点都可以表示这条直线,故正确;③三点确定一条直线或三条直线,故错误;④过一点可以作无数条直线,故正确.故答案为③.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.12.1【分析】方程组中两个方程相加即可求出x-y的值.【详解】345254x yx y+=⎧⎨+=⎩中的第一个方程减去第二个方程得:x-y=1,故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两个方程都成立的未知数的值. 13.0【分析】先求出a ,b ,c 的值,再把它们相加即可. 【详解】解:由题意,得:a =1,b =-1,c =0, 故a +b +c =1-1+0=0. 故答案为:0.【点睛】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 14.1-【分析】所含字母相同,并且相同字母的指数也相同的项叫做同类项.【详解】①单项式12m xy +与单项式2313n x y -是同类项①2113n m -=⎧⎨+=⎩,解得32n m =⎧⎨=⎩ ①231m n -=-=-. 故答案为:1-.【点睛】本题考查了同类项的概念.注意同类项与字母的顺序无关. 15.100【分析】一个样本包括的个体数量叫做样本容量.【详解】解:要了解5000件商品的质量问题,从中任意抽取100件商品进行试验,在这个问题中,样本包括的个体数量是100,所以样本容量是100. 故答案为100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.样本容量是样本中包含的个体的数目,不能带单位. 16.-4.5【分析】根据题意得到式子2x+6=-3即可求解. 【详解】根据题意得2x+6=-3 解得x=-4.5 故填:-4.5.【点睛】此题主要考查代数式求值,解题的关键是根据题意列出式子求解.17.3【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:①132n x y +-与34y x 是同类项,①n +1=4,解得,n =3,故答案为:3.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.-1【分析】由已知条件得到(a 2-2a )的值后,代入代数式求值.【详解】223a a -=,∴原式()2522a a =--561=-=-,故答案为1-.【点睛】本题考查了整式的运算,要会把a 2-2a 看作一个整体,然后整体代入计算. 19.0【分析】根据题意得出012a b cd m +===,,或2m =-,然后整体代入代数式求解即可. 【详解】解:①a ,b 互为相反数,且0ab ≠,c 、d 互为倒数,m 是数轴上到原点的距离为2的点表示的数,①012a b cd m +===,,或2m =-, ①1b a=-, ①322()3b a b cd m a ⎛⎫++-+ ⎪⎝⎭()324103-=+-+ 0=,故答案为:0.【点睛】题目主要考查相反数、倒数的定义及数轴上的点到原点的距离,求代数式的值等,理解题意,综合运用这些基础知识点是解题关键.20.100°.【分析】直接利用方位角结合平角的性质得出答案.【详解】解:如图所示:因为点A在点O的北偏东50°方向所以①NOA=50°;因为点B在点O的南偏东30°方向上所以①SOB=30°则①AOB=180°-①NOA-①SOB=100°.故答案为:100°.【点睛】题考查了方位角的意义和角的和差.用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.21.152或13或372【分析】分三种情况:当点P在BC边上时,当点P在CD边上时,当点P在DE边上时,分别利用三角形面积公式求解即可.【详解】解:①长方形ABCD,①AD=BC=9cm,CD=AB=8cm,①AE=2DE,①AE=6cm,DE=3cm,当点P在BC边上时,如图,S△PCE=12PC AB=12(9-t)×8=6,解得:t=152;当点P在CD边上时,S△PCE=12PC DE⋅=12(t-9)×3=6,解得:t=13;当点P在DE边上时,S△PCE=12PE CD⋅=12(9+8+3-t)×8=6,解得:t=372;综上,当PCE的面积为6cm2时,则点P运动的时间为152s或13s或372s.故答案为:152或13或372【点睛】本题考查长方形的性质,三角形面积,一元一次方程的应用,分类讨论思想的应用是解题的关键.22.-5【分析】找出绝对值大于133-而小于2的所有的整数,求出之和即可.【详解】大于133-而小于2的所有的整数为-3,-2,-1,0,1,则所有整数之和为-3-2-1+0+1=-5.故答案为:-5.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键. 23.-21【详解】解:34-⊗=-3×4-(-3)2=-21.故答案为:-2124.8【详解】①13x 2y m 与2x n y 6是同类项, ①n =2,m =6.①n +m =8.故答案为8.25. 4a b - 4.2【分析】用总钱数减去买名著的钱数就是剩下的钱数,然后把a=150,b=36.45,代入含有字母的式子,即可求出还剩下的钱数.【详解】解:根据题意,则买完一套名著剩下的钱为:4a b -;当150a =,36.45b =元时,①4150436.45 4.2a b -=-⨯=(元);故答案为:4a b -;4.2;【点睛】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.26. < >【分析】(1)先化简绝对值、去括号,再根据有理数的大小比较法则即可得;(2)根据有理数的大小比较法则即可得.【详解】(1)99--=-,()99--=, 则()99--<--;(2)346788=<, 则8347->-; 故答案为:<,>.【点睛】本题考查了绝对值、去括号、有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.27.21.【分析】根据新定义,用3和-2分别代替公式中的a,b 正确计算即可.【详解】①对于任意有理数a 和b ,规定23a b ab a =+☆,①()32-=☆3×2(2)-+3×3=21,故应该填21.【点睛】本题考查了新定义知识,准确理解新定义公式的意义是解题的关键.28.32π【分析】分情况讨论,分绕长为2或是4的边旋转,再根据圆柱的体积公式即可解【详解】由题意,旋转构成一个圆柱的体积为π×22×4=16π或π×24×2=32π,故答案为32π【点睛】圆柱的体积公式是底面积与高的积.29.6000cm 3【分析】根据图形找出长方体的长宽高即可解题.【详解】解:由图可知长方体的长为30cm,宽为20cm,高为10cm,①长方体的容积=302010⨯⨯=6000 cm 3.【点睛】本题考查了立体图形的体积,中等难度,读图能力,由平面图形找到长方体的长宽高是解题关键.30.102a b --,6-.【分析】先去括号,再计算整式的加减,然后将53a b +=代入求值即可得.【详解】解:原式2641244a b b a =-+-+-102a b =--,将53a b +=代入得:原式2(5)236a b =-+=-⨯=-.【点睛】本题考查了整式加减中的化简求值,熟练掌握整式的加减运算法则是解题关键. 31.(1)4(2)-4a =(a≥0)a ,3a =,和绝对值的意义计算.解:(1=2-(-2)=4.(2)|13=-4.32.(1)1;(2)2x =-【分析】(1)由题中所给定义新运算可直接代入求解;(2)根据题中所给定义新运算可列出方程,然后求解即可.【详解】解:(1)由题意得:()()()2*3223231-=⨯--+⨯-=;(2)由题意得:16312x x x x -+=-+ 移项,得13162x x x x -++-=-, 合并同类项,得552x =-, 系数化为1,得2x =-.【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.33.6113x y z =⎧⎪=-⎨⎪=⎩.【分析】①﹣①得出2y =-22,求出y =﹣11,把y =﹣11代入①,即可求得x =6,再把x =6,y =-11代入①进而求得z =3即可.【详解】解:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩①②③ ①-①得,2y =-22,解得y =-11.把y =-11代入①中,得11x +6×(-11)=0,解得x =6.把x =6,y =-11代入①中,得6-11+z =-2,解得z =3.①原方程组的解为6113x y z =⎧⎪=-⎨⎪=⎩.【点睛】本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.34.(1)240人、60º;(2)40人,图见解析;(3)600册【分析】(1)、用借“生活”类的书的人数除以它所占的百分比即可得到调查的总人数;然后用360°乘以借阅“经济”的人数所占的百分比得到“经济”部分的圆心角度;(2)、先计算出借阅“科普”的学生数,然后补全条形统计图;(3)、利用样本估计总体,用样本中“科普”类所占的百分比乘以3600即可.【详解】解:(1)、上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“经济”部分的圆心角度数=360°×40240=60°; (2)、借阅“科普”的学生数=240﹣100﹣60﹣40=40(人),条形统计图为:(3)、3600×40240=600(册), 估计“科普”类图书应添置600册合适. 【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解题关键.35.22106x y xy xy --+,-204【分析】先根据整式的加减:合并同类项化简整式,再将x 、y 的值代入求解即可.【详解】()22222232324x y xy x y xy xy xy ⎡⎤+---+-⎣⎦()22222232324x y xy x y xy xy xy =+-+-+-2222223644x y xy x y xy xy xy =+--+-22106x y xy xy =--+当2x =,=3y -时原式()()()22231023623=-⨯--⨯⨯-+⨯⨯- 1218036=--204=-.【点睛】本题考查了整式的化简求值,熟记整式的加减法则是解题关键.36.(1)-2;(2)9【分析】(1)先根据整式的混合运算顺序和运算法则化简原式,再将a 、b 的值代入计算可得;(2)先根据整式的混合运算顺序和运算法则化简原式,再由非负数性质得出a 2=1﹣m ,b =2﹣m ,代入计算可得.【详解】解:(1)原式=﹣a 2b +ab 2﹣3a 2b ﹣2ab 2+4a 2b=﹣ab 2;当a =2,b =1时,原式=-2×12=﹣2.(2)原式=2a 2﹣2b +3a 2﹣2a 2﹣b=3a 2﹣3b ,①(a 2+m ﹣1)2+|b +m +2|=0,①a 2+m ﹣1=0,b +m +2=0①3a 2﹣3b =3(1﹣m )﹣3(﹣m ﹣2)=9.【点睛】此题主要考查整式的运算,解题的关键是熟知整式的加减运算法则.37.(1)5.5(2)10千克(3)918元【详解】试题分析:(1)根据正负数的意义列式计算即可得解;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20筐白菜的质量乘以单价,计算即可得解.试题解析:(1)最轻的是-3,最重的是2.5,2.5-(-3)=2.5+3=5.5(千克)答:最重的一筐比最轻的一筐重5.5千克;故答案为5.5.(2)(-3)×1+(-2)×4+(-1.5)×2+0×1+1×4+2.5×8=-3-8-3+0+4+20=-14+24=10(千克) 答:与标准重量比较,20筐白菜总计超过10千克;(3)25×20+10=500+10=510(千克),510×1.8=918(元).故出售这20筐白菜可卖918元.考点:正数和负数.38.(1)40;(2)补图见解析;(3)1~1.5;(4)125名.【分析】(1)利用1~1.5小时的频数和百分比即可求得总数;(2)根据总数可计算出时间在0.5~1小时的人数,从而补全图形;(3)根据中位数的定义得到完成作业时间的中位数是第20个数和第21个数的平均数,而0.5-1有12人,1-1.5有18人,即可得到中位数落在1-1.5h内;(4)用七年级共有的学生数乘以完成作业时间超过1.5小时的人数所占的百分比即可.【详解】解:(1)(1)根据题意得:该班共有的学生是:1845%=40(人);这个班的学生人数为40人;(2)0.5~1小时的人数是:40×30%=12(人),如图:(3)共有40名学生,完成作业时间的中位数是第20个数和第21个数的平均数,即中位数在1-1.5小时内;(4)①超过1.5小时有10人,占总数的1025% 40=.①25%500125⨯=答:估计八年级学生课外完成数学作业时间超过1.5小时的有125名.【点睛】本题考查了条形统计图:条形统计图反映了各小组的频数,并且各小组的频数之和等于总数.也考查了扇形统计图、中位数的概念.39.“■”这个有理数为65-,方程的解为:y=1【分析】利用“该方程的解与当x=2时整式5(x−1)−2(x−2)−4的值相同”求出方程的解;再将方程的解代入y125-=y+■中求得■.【详解】解:当x=2时,整式5(x−1)−2(x−2)−4=5×(2−1)−2×(2−2)−4=1.①方程的解与当x=2时整式5(x−1)−2(x−2)−4的值相同,①方程的解为:y=1.当y=1时,y125-=y+■.①1125-=+■解得:■=65 -.答:“■”这个有理数为65-,方程的解为:y=1.【点睛】本题主要考查了一元一次方程的解,求代数式的值.利用方程的解的意义,将方程的解去替换未知数的值是解题的关键.40.(1)-12;(2) 11425;(3) 323;(4)1.【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1 2 -;(2)-3-3510.225⎡⎤⎛⎫-+-⨯÷-⎪⎢⎥⎝⎭⎣⎦=-3-221 5252 -+⨯()=-3-(-5+1125)=-3+5-1125=2-1125=14 125;(3)114332⎛⎫-⎪⎝⎭×(-2)-221÷32⎛⎫-⎪⎝⎭=(13732-)×(-2)823-⨯-()=53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2 =[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.41.211x y z =⎧⎪=-⎨⎪=⎩【分析】由①+①×3可得31711x y +=-④,再由由①-①可得1y =-,然后把1y =-分别代入①,①,即可求解.【详解】解: 32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩①②③ 由①+①×3得:31711x y +=-④,由①-①得:1919y -=,解得:1y =-,把1y =-代入①得:2x =,把1y =-,代入①得 :1z =,所以原方程组的解为211x y z =⎧⎪=-⎨⎪=⎩【点睛】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.42.59【分析】这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数正好有10个,分别是13579131517192122222222222222222222、、、、、、、、、,它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍,即可求出10个有理数之和.【详解】解:由题意得:分母为22的既约真分数有13579131517192122222222222222222222、、、、、、、、、 ①135791315171921522222222222222222222+++++++++= ①10个有理数之和为5599÷= 故答案为:59. 【点睛】本题主要考查来了有理数的加法和除法,准确地理解题意,得出正确的数量关系是求解的关键.43.2xy xy +,6-【分析】先利用乘法分配率计算小括号,然后再算中括号,最后合并得到最简结果,将x 与y 的值代入计算,即可求出值.【详解】解:()2222322 1.53x y xy xy x y xy xy ⎡⎤⎣⎦---++()222232233x y xy xy x y xy xy =--+++222232233x y xy xy x y xy xy =--++- 2xy xy =+当3,2x y =-=-时原式()()()()23232+=---- 126=-+6=-;【点睛】此题考查了整式的加减混合运算、去括号法则,合并同类项法则和代数式求值,熟练掌握公式及法则是解本题的关键.44.(1)4;(2)16-.【分析】(1)利用有理数加减法的交换律与结合律进行计算即可得;(2)利用有理数乘法的分配律进行计算即可得.【详解】(1)原式111410323355⎛⎫=+--- ⎪⎝⎭, 111410323355⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭, 73=-,4=;(2)原式()()()125242424236=-⨯--⨯+-⨯, 121620=-+-,420=-,16=-.【点睛】本题考查了有理数加减法的交换律与结合律、有理数乘法的分配律,熟练掌握有理数的运算法则和运算律是解题关键.45.(1)机器人最后离出发点5厘米,在出发点的右边;(2)4.875(厘米/分)【分析】(1)直接把5次爬行的数据相加,再根据有理数的加减混合运算规则计算出结果即可;(2)求出各数据的绝对值的和,再根据速度=路程÷时间解答.【详解】(1)-8-412-5105++=,所以机器人最后离出发点5厘米,在出发点的右边;(2)机器人爬行的总路程为841251039++++=厘米,所以速度为39÷8=4.875(厘米/分)【点睛】本题主要考查有理数的加减运算,第二问要利用爬行过的路程的绝对值的和求解,这是学生容易出错的地方.46.21°42′【分析】首先求得①AOC 的度数,根据角平分线的定义求得①AOD ,然后根据①BOD=①AOD-①AOB 求解.【详解】①①AOB=43°,①BOC=86°24′,①①AOC=43°+86°24′=129°24′,①OD 平分①AOC ,①①AOD=12①AOC=129°24′÷2=64°42′, ①①BOD=①AOD- ①AOB=64°42′-43°=21°42′.【点睛】本题考查了角度的计算,正确理解角平分线的定义,求得①AOD 是关键. 47.(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,①OD 平分AOC ∠,①60AOD COD ∠=∠=︒,①601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.48.(1)3x =;(2)15x =- 【分析】(1) 根据解一元一次方程的步骤求解即可;(2)根据解一元一次方程的步骤求解即可.【详解】(1)去括号得:1365x x -+=-,移项得:3561x x --=---,合并同类项得:412x -=-,系数化为1得:3x =(2)去分母得:()()22136x x ---=-,去括号得:4236x x --+=-,移项、合并同类项得:5=1x -,系数化为1得:1=5x -. 【点睛】此题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤.。
沪科版七年级数学上册竞赛试题及详解一.选择题(共10小题)1.(2014•佛山)据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学记数法表示民生项目资金是()A.70×108元B.7×108元C.6.93×108元D.6.93×109元2.(2014•台湾)若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24 B.48 C.72 D.2403.(2013•扬州一模)计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72 C.5F D.B04.2008年8月8日晚上8时,第29届奥运会开幕式在北京“鸟巢”举行,开幕式宏伟壮观,大气磅礴,给世人留下了深刻的印象,据悉,这部盛典的幕后工作者是中国航天人,他们使用了大量载人航天技术和火箭技术,给奥运场馆装上了“大脑”,实现“不同地域、不同场馆”的信息集成,以保证零失误,可想而知,其中的程序设计多么复杂.现在请同学们体会一个小小的程序设计.如图,若开始输入的x值为96,我们发现得到的结果为48,第2次得到的结果为24…,通过探索可知,第2009次得到的结果为()A.3B.6C.8D.15.(2014•淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣76.(2014•绍兴)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克7.(2014•台湾)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.58.(2012•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是()A.0B.1C.2D.39.(2010•栖霞区一模)连接边长为1的正方形对边中点,可将一个正方形分成2个大小相同的长方形,选右边的长方形进行第二次操作,又可将这个长方形分成2个更小的正方形…重复这样的操作,经过仔细地观察与思考,猜想的值等于()A.1B.C.D.10.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条二.填空题(共8小题)11.(2010•临沂)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为_________.12.(2006•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是_________.(只填序号,答案格式如:“①②③④”).13.(2003•随州)某综合性大学拟建校园局域网,将大学本部A和所属专业学院B、C、D、E、F、G之间用网线连接起来,经过测算,网线费用如图所示(单位:万元),每个数字表示对应网线(线段)的费用,实际建网时部分网线可以省略不建,但本部及所属专业学院之间可以传递信息,那么建网所需的最少网线费用为_________万元.14.(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是_________.15.(2008•随州)一项工程,甲工程队工作10天后,因另有任务离开,由乙工程队接着完成.整个工作量作“1”,如图是完成的工作量y随时间x(天)变化的图象,如果两个工程队合做,完成这项工程所需的天数是_________天.16.(2007•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_________.17.(2004•江西)如图,已知方格纸中的每个小方格都是相同的正方形.∠ACB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠ACB的平分线上._________.18.两个完全相同的长方体的长、宽、高分别是5cm、4cm、3cm,把它们叠放在一起组成一个新的长方体,在这些新的长方体中,表面积最大是_________cm2.三.解答题(共8小题)19.阅读理解:给定次序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为_________.20.(2008•湛江)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=_________;(2)探究=_________;(用含有n的式子表示)(3)若的值为,求n的值.21.(2005•恩施州)下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.22.(2006•青岛)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如:求1+2+3+4+…+n 的值,其中n 是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n 的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n 行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n (n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n ﹣1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)(2)试设计另外一种图形,求1+3+5+7+…+(2n ﹣1)的值,其中n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)23.(2011•无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表: 税级 现行征税方法 草案征税方法月应纳税额x 税率 速算扣除数月应纳税额x 税率 速算扣除数 1 x ≤500 5% 0 x ≤1500 5% 0 2 500<x ≤2000 10% 25 1500<10%x≤4500 _________3 2000<x≤5000 15% 125 4500<x≤9000 20%_________4 5000<x≤20000 20% 375 9000<x≤3500025% 9755 20000<x≤40000 25% 1375 35000<x≤5500030% 2725注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元).方法二:用“月应纳税额x适用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?24.(2008•乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为_________;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.25.(2007•遵义)某中学准备改造面积为1080m2的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造10m2;甲工程队每天所需费用160元,乙工程队每天所需费用200元.(1)求甲乙两个工程队每天各改造操场多少平方米?(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有以下三种方案供选择.第一种方案:由甲单独改造;第二种方案:由乙单独改造;第三种方案:由甲、乙一起同时进行改造;你认为哪一种方案既省时又省钱?试比较说明.26.(2005•岳阳)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.沪科版七年级数学上册1-4单元竞赛试题参考答案与试题解析一.选择题(共10小题)1.(2014•佛山)据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学记数法表示民生项目资金是()A.70×108元B.7×108元C.6.93×108元D.6.93×109元考点:科学记数法—表示较大的数.分析:用总投入乘以99%,再根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.解答:解:7 000 000 000×99%=6 930 000 000=6.93×109.故选:D.点评:此题考查科学记数法表示较大的数的方法,准确地确定a与n值是关键.2.(2014•台湾)若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24 B.48 C.72 D.240考点:有理数的乘法.分析:根据有理数的乘法,求出所有因子的最小公倍数,然后求出与720的最大公因数,即为最大公因子.解答:解:1、2、3、4、6、8、12、16、24最小公倍数是48,48与720的最大公因数是48,所以,a与720的最大公因子是48.故选B.点评:本题考查了有理数的乘法,确定出所有因子的最小公倍数是解题的关键.3.(2013•扬州一模)计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72 C.5F D.B0考点:有理数的混合运算.专题:压轴题;新定义.分析:在表格中找出A和B所对应的十进制数字,然后根据十进制表示出A×B,根据表格中E对应的十进制数字可把A×B用十六进制表示.解答:解:∵表格中A对应的十进制数为10,B对应的十进制数为11,∴A×B=10×11,由十进制表示为:10×11=6×16+14,又表格中E对应的十进制为14,∴用十六进制表示A×B=6E.故选A.点评:此题属于新定义的题型,此类题主要是弄清题意,理解新定义,解本题的关键是从表格中找出十六进制与十进制间的转换关系.4.2008年8月8日晚上8时,第29届奥运会开幕式在北京“鸟巢”举行,开幕式宏伟壮观,大气磅礴,给世人留下了深刻的印象,据悉,这部盛典的幕后工作者是中国航天人,他们使用了大量载人航天技术和火箭技术,给奥运场馆装上了“大脑”,实现“不同地域、不同场馆”的信息集成,以保证零失误,可想而知,其中的程序设计多么复杂.现在请同学们体会一个小小的程序设计.如图,若开始输入的x值为96,我们发现得到的结果为48,第2次得到的结果为24…,通过探索可知,第2009次得到的结果为()A.3B.6C.8D.1考点:代数式求值.专题:压轴题;规律型.分析:根据所给程序计算,寻找规律,就可求出第2009次得到的结果.解答:解:根据所给程序计算当x=96时,第一次输出为x=48,48为偶数,第二次输出是x=24,24是偶数,第三次输出是x=12,12是偶数,第四次输出是6,6是偶数,第五次输出为3,3是奇数,第六次输出是x+5=8,8是偶数,第七次输出是4,4是偶数,第八次输出是2,2是偶数,第九次输出是1,1是奇数,第十次输出是6.开始循环,规律是6、3、8、4、2、1.故(2009﹣4)÷6,余数是1.所以第2009次输出的结果是3.故选A.点评:此类题一般都有规律,要能分析出几个一循环就可迎刃而解.5.(2014•淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.6.(2014•绍兴)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克考点:一元一次方程的应用.专题:计算题.分析:根据天平仍然处于平衡状态列出一元一次方程求解即可.解答:解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+20,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.故选:A.点评:本题考查了一元一次方程的应用,解题的关键是找到等量关系.7.(2014•台湾)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.5考点:一元一次方程的应用.专题:应用题.分析:根据甲、乙、丙三杯内水的高度比变为3:4:5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解答:解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.8.(2012•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是()A.0B.1C.2D.3考点:规律型:图形的变化类.专题:压轴题.分析:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.解答:解:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即:这枚棋子永远不能到达的角的个数是3.故选D.点评:本题考查理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.9.(2010•栖霞区一模)连接边长为1的正方形对边中点,可将一个正方形分成2个大小相同的长方形,选右边的长方形进行第二次操作,又可将这个长方形分成2个更小的正方形…重复这样的操作,经过仔细地观察与思考,猜想的值等于()A.1B.C.D.考点:规律型:数字的变化类.专题:压轴题;探究型.分析:由图中可知:=1﹣;=1﹣;…,故左侧式子的和等于1减去最后一个加数,据此求解.解答:解:根据题意可得,;=1﹣;=1﹣;…故=1﹣.故选D.点评:通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.10.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条考点:直线、射线、线段.分析:根据棋盘的边和对角线查找.解答:解:如图,共有5条.故选D.点评:从对角线上找比较困难,这就要求同学们在平时的学习中提高自身能力.二.填空题(共8小题)11.(2010•临沂)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为6,4,1,7.考点:有理数的混合运算.专题:应用题;压轴题.分析:根据密文规则a+2b,2b+c,2c+3d,4d列出等式,求解即可得到明文a、b、c、d的值.解答:解:根据题意,得①a+2b=14,②2b+c=9,③2c+3d=23,④4d=28,解④得,d=7,把d=7代入③得,c=1,把c=1代入②得,b=4,把b=4代入①得,a=6.所以明文为6,4,1,7.点评:本题是信息给予题,读懂题目信息是解题的关键.12.(2006•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).考点:有理数大小比较;数轴.专题:压轴题.分析:首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.解答:解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立的有①②④.故答案为:①②④.点评:此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.13.(2003•随州)某综合性大学拟建校园局域网,将大学本部A和所属专业学院B、C、D、E、F、G之间用网线连接起来,经过测算,网线费用如图所示(单位:万元),每个数字表示对应网线(线段)的费用,实际建网时部分网线可以省略不建,但本部及所属专业学院之间可以传递信息,那么建网所需的最少网线费用为9万元.考点:有理数的混合运算;有理数大小比较.专题:应用题;压轴题.分析:根据题意可得:此题要求两点:(1)将A和B、C、D、E、F、G之间用网线连接起来;(2)所需的最少网线费用即各段数字之和最小.分析比较建网所需的费用后得结论.解答:解:实际建网线路为C﹣D﹣E﹣A﹣F﹣G﹣B,网线费用为2+2+1+2+1+1=9,故填9.点评:本题立意较新颖,要求学生能从题目中,获取必要的信息,再进行分析,本题还要求进行验证比较,最后得出结论.14.(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.15.(2008•随州)一项工程,甲工程队工作10天后,因另有任务离开,由乙工程队接着完成.整个工作量作“1”,如图是完成的工作量y随时间x(天)变化的图象,如果两个工程队合做,完成这项工程所需的天数是10天.考点:二元一次方程组的应用.专题:压轴题.分析:本题可设乙工程队每天完成的工作量是x,由图象可知,甲队5天做了,则每天做,并且甲、乙两队各做10天,把工程做完,依此可列出方程求解,然后再代入求如果两个工程队合做,完成这项工程所需的天数.解答:解:设乙工程队每天完成的工作量是x,因甲队5天做了,则每天做.根据题意:得,解得:x=.∴如果两个工程队合做,完成这项工程所需的天数是1÷=10天.故填10.点评:此类题目属于数形结合,需仔细分析图象,寻找信息,再利用方程解决问题.16.(2007•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.考点:二元一次方程组的解.专题:压轴题;阅读型.分析:把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.解答:解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.点评:本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决有一定的难度.17.(2004•江西)如图,已知方格纸中的每个小方格都是相同的正方形.∠ACB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠ACB的平分线上.请参见解答.考点:作图—基本作图.专题:压轴题;网格型;开放型.分析:CA,CB上分别取点A,B使CA=CB=5;以点A、B、C为顶点,作菱形即可找到P点.解答:解:作法:点评:考查了格点中角平分线的画法;注意尽量运用格点构造菱形.18.两个完全相同的长方体的长、宽、高分别是5cm、4cm、3cm,把它们叠放在一起组成一个新的长方体,在这些新的长方体中,表面积最大是164cm2.考点:几何体的表面积.专题:压轴题.分析:把长、宽、高分别为5,4,3cm的两个面叠放在一起组成一个新的长方体的表面积最大,就要求把两个面积最小的面组合在一起.解答:解:根据以上分析:表面积最大的是2×(4×3)+4×(5×4+5×3)=164cm2.故答案为:164cm2.点评:长方体的表面积=2×(长×宽+长×高+宽×高).三.解答题(共8小题)19.阅读理解:给定次序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为120.考点:有理数的混合运算.专题:压轴题;阅读型;新定义.分析:首先求出s1+s2+s3+…+s99的值,然后再求添上21后的100个数21,a1,a2,…,a99的凯森和.解答:解:∵99个数a1,a2,…,a99的“凯森和”为100,∴(S1+S2+…+S99)÷99=100,∴S1+S2+…+S99=9900,(21+S1+21+S2+21+…+S99+21)÷100=(21×100+S1+S2+…+S99)÷100=(21×100+9900)÷100=21+99=120.故填120.点评:正确理解凯森和的含义是解答本题的关键.20.(2008•湛江)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:通过观察数据找到规律,并以规律解题即可.解答:解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;。