与圆有关的最值问题
- 格式:ppt
- 大小:297.00 KB
- 文档页数:10
有关圆的最值问题几种类型及方法圆形是初中数学中常见的图形,它有很多特殊的性质。
其中一项重要性质就是它具有最小和最大值。
在圆形的几何学中,有不同的最值问题类型,本文将介绍其中几种类型和解决方法。
问题类型1. 半周长最大问题描述:在一个固定的圆中,找到一个周长为定值的最大圆。
解决方法:利用相似三角形比值和性质,通过求出最大圆的半径得出周长最大的圆。
2. 面积最大问题描述:在一个固定的圆中,找到面积最大的圆。
解决方法:通过对已知条件进行约束,运用微积分的极值问题求解最大面积圆的面积。
3. 离心率最大问题描述:在一个固定的圆中,找到一点使得其到圆的距离与到圆心的距离之比最大。
解决方法:通过对于点到圆心的距离公式的推导,结合相关性质,使用数学分析方法解决问题。
4. 切线长度最短问题描述:如何从一个外圆割出一个内接圆的形状,且切线的长度最短。
解决方法:通过运用切线长度公式和勾股定理,推导出最短切线的长度公式,通过微积分求解最小值。
解决方法方法1:运用几何知识在解决这些最值问题时,通过几何知识、特殊性质、面积比和相似性质等直观的方法,可以解决一些简单的最值问题。
例如,第一类问题可以通过找到两个相似三角形的比值,解出最大圆的半径;第二类问题可以通过勾股定理求出直角三角形的面积比例。
方法2:微积分方法对于一些复杂的最值问题,采用微积分的方法计算可能更为简便。
通过设出方程,运用微积分的极值问题方法求出函数的最值点,并验证其确为最值点,就可以直接求解最大或最小值。
例如,第二类问题就是一个极大值问题,可以通过设定面积函数,求该函数的一阶和二阶导数,分析得出最大值点的位置和最大面积值。
方法3:从物理学的角度出发物理学的一些基本定理也可以用来解决圆的最值问题。
例如,第一类问题中,最大圆对应的角速度是圆心角的一半,这是由圆周运动的基本物理定律所得。
将圆周运动和相似三角形的比例性质联系起来,可以解出最大圆的半径。
圆是初中数学中比较基础的图形,但在解决圆的最值问题时,需要综合运用几何知识、微积分知识和物理学知识等多方面的知识。
第11题与圆有关的最值问题一、原题呈现【原题】已知点P 在圆 225516x y 上,点 4,0A 、 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PB D.当PBA 最大时,PB 【答案】ACD【解析】圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB11545,所以,点P 到直线AB的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM,4MP ,由勾股定理可得BP选项正确.故选ACD.【就题论题】本题涉及的与圆有关的最值问题是高考的热点问题.由于圆既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活,故与圆相关的最值问题备受命题者的青睐.在运动变化中,动点到直线、圆的距离会发生变化,圆上点到动直线的距离也会发生变化,在变化过程中,就会出现一些最值问题,如距离、角最二、考题揭秘【命题意图】本题考查圆的方程及直线与圆的位置关系,考查直观想象、逻辑推理及数学抽象的核心素养.难度:中等【考情分析】圆的方程及直线与圆的位置关系一直是高考热点,通常作为客观题考查,长度、面积的计算,参数问题及最值问题是考查热点.【得分秘籍】(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.注意圆的弦长或切线段的长通常利用勾股定理转化为圆心到直线距离或点到圆心距离(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.(3)与距离最值有关的常见的结论:①圆外一点A 到圆上距离最近为AO r ,最远为AO r ;②过圆内一点的弦最长为圆的直径,最短为该点为中点的弦;③直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;④过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆的面积.⑤直线外一点与直线上的点的距离中,最短的是点到直线的距离;⑥两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.(4)与圆有关的面积的最值问题或圆中与数量积有关的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.【易错警示】(1)不善于借助图形进行分析,导致解法方法错误(2)不善于运用圆的几何性质进行转化,导致运算量过大,以致运算失误三、以例及类(以下所选试题均来自新高考Ⅰ卷地区2020年1-6月模拟试卷)一、单选题1.(2021山东省淄博市高三一模)圆22280x y x 截直线 1y kx k R 所得的最短弦长为()A .B .C .D .22.(2021江苏省百师联盟高三下学期3月联考)已知圆22:4230C x y x y ,过原点的直线l 与圆C 相交于,A B 两点,则当ABC 的面积最大时,直线l 的方程为()A .0y 或43y xB .2y x 或12y x C .0x 或13y xD .34y x3.(2021湖南省郴州市高三下学期3月第三次质量监测)设点M 在圆222(0)x y r r 外,若圆O 上存在点N ,使得4OMN,则实数r 的取值范围是()A .B .C .D .4.(2021福建省龙岩市高三5月模拟)已知P 是圆C :2246110 x y x y 外一点,过P 作圆的两切线,切点为A ,B ,则PA PB的最小值为()A .6B .4 C .2D .5.(2021福建省宁德市高三第一次质量检查)已知点(2,4)M ,若过点(4,0)N 的直线l 交圆于C :22(6)9x y 于A ,B 两点,则||MA MB的最大值为()A .12B .C .10D .6.(2021河北省邯郸市高三三模)已知点P 在直线4x y 上,过点P 作圆22:4O x y 的两条切线,切点分别为A ,B ,则点(3,2)M 到直线AB 距离的最大值为()A B C .2D .7.(2021江苏省苏州市高三5月三模)在平面直角坐标系xOy 中,点Q 为圆M :22(1)(1)1x y 上一动点,过圆M 外一点P 向圆M 引-条切线,切点为A ,若|PA |=|PO |,则||PQ 的最小值为()A 1B 1C 1D .1 8.(2021山东省济宁市高三二模)“曼哈顿距离”是由赫尔曼 闵可夫斯基所创的词汇,是一种使用在几何度量空间的几何学用语.例如在平面直角坐标系中,点 11,P x y 、 22,Q x y 的曼哈顿距离为:1212PQ L x x y y .若点 1,2P ,点Q 为圆22:4C x y 上一动点,则PQ L 的最大值为()A .1B .1C .3D .3 9.(2021山东省日照市高三第二次模拟)若实数x y 、满足条件221x y ,则21y x 的范围是()A .B .3,5 C .,1 D .3,410.(2021江苏省南通市高三阶段性测试)在平面直角坐标系xOy 中,给定两点(1,2)M ,(3,4)N ,点P 在x 轴的正半轴上移动,当MPN 取最大值时,点P 的横坐标为()A .52B .53C .3D .10311.(2021湖南省怀化市高三下学期3月一模)若实数,x y 满足x 则x 最大值是()A .4B .18C .20D .2412.(2021湖北省鄂州高三3月月考)已知直线1:310l mx y m 与直线2:310l x my m 相交于点P ,线段AB 是圆22:(1)(1)4C x y 的一条动弦,且||AB ,则||PA PB的最大值为()A .B .C .D .2二、多选题13.(2021山东省淄博市高三三模)已知圆221:230O x y x 和圆222:210O x y y 的交点为A ,B ,则()A .圆1O 和圆2O 有两条公切线B .直线AB 的方程为10x y C .圆2O 上存在两点P 和Q 使得||||PQ ABD .圆1O 上的点到直线AB 的最大距离为214.(2021江苏省南通学科基地高三全真模拟)集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合22,925A x y xy , ,B x y y x m , ,2C x y y kx k 则下列说法中正确的有()A .若AB ,则实数m 的取值范围为 m m B .存在k R ,使AC C .无论k 取何值,都有A CD .A C ∩的最大值为415.(2021河北省沧州市高三三模)已知点 2,4P ,若过点 4,0Q 的直线l 交圆C : 2269x y 于A ,B 两点,R 是圆C 上一动点,则()A .AB 的最小值为B .P 到l 的距离的最大值为C .PQ PR的最小值为12 D .PR 的最大值为316.(2021河北省张家口市、沧州市高三下学期二模)已知直线:0l kx y 与圆22:2210M x y x y ,则下列说法中正确的是()A .直线l 与圆M 一定相交B .若0k ,则直线l 与圆M 相切C .当1k 时,直线l 与圆M 的相交弦最长D .圆心M 到直线l 三、填空题17.(2021湖北省襄阳市高三5月第二次模拟)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(λ>0,λ≠1),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :x 2+y 2=1和点1,02A,点B (4,2),M 为圆O 上的动点,则2|MA |+|MB |的最小值为___________18.(2021华大新高考联盟高三下学期3月教学质量测评)已知点M 在抛物线C :24y x 上运动,圆C 过点 5,0, , 3,2 ,过点M 引直线1l ,2l 与圆C 相切,切点分别为P ,Q ,则PQ 的取值范围为__________.19.(2021湖南省益阳市高三下学期4月模拟)已知圆O :x 2+y 2=1,A (3,3),点P 在直线l :x ﹣y =2上运动,则|PA |+|PO |的最小值为___________.20.(2021江苏省南通市高三下学期5月四模)舒腾尺是荷兰数学家舒腾(1615-1660)设计的一种作图工具,如图,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动.当点D 在滑槽AB 内作往复移动时,带动点N 绕O 转动,点M 也随之而运动.记点N 的运动轨迹为1C ,点M 的运动轨迹为2C .若1ON DN ,3MN ,过2C 上的点P 向1C 作切线,则切线长的最大值为___________.。
与圆相关的最值问题
与圆相关的最值问题可以包括多个方面,例如圆的周长、面积、弧长等。
以下是一些常见的与圆相关的最值问题及其解决方法:
1. 圆的周长最值问题:
* 设圆的半径为r,则周长C=2πr。
当r取最小值时,C取最小值。
* 解决方法:当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时r取最小值。
2. 圆的面积最值问题:
* 设圆的半径为r,则面积A=πr^2。
当r取最小值时,A取最小值。
* 解决方法:与周长最值问题类似,当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时r取最小值。
3. 圆的弧长最值问题:
* 设圆的半径为r,圆心角为θ,则弧长L=rθ。
当θ取最大值时,L取最大值。
* 解决方法:当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时θ取最大值。
4. 圆内接四边形面积最值问题:
* 设圆内接四边形的边长分别为a, b, c, d,则面积S=(a×b+c ×d)/2。
当a=b=c=d时,S取最大值。
* 解决方法:当四边形为正方形时,S取最大值。
5. 圆内接三角形面积最值问题:
* 设圆内接三角形的边长分别为a, b, c,则面积S=(a×b+b×c+c×a)/4。
当a=b=c时,S取最大值。
* 解决方法:当三角形为等边三角形时,S取最大值。
以上是与圆相关的常见最值问题及其解决方法,希望对您有所帮助。
初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。
解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。
与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。
圆的最值问题一圆心到定直线的距离的最值问题例1 设P 是直线043:=-y x l 上的动点,PA,PB 是圆012222=+--+y x y x 的两条切线,C 是圆心,那么四边形PACB 的最小值是_____________.变式:已知)(y x P ,是直线)0(04>=++k y kx 上一动点,PA,PB 是圆:0222=-+y y x 的两条切线,A,B 是切点,若四边形PACB 最小面积是2,则k=_____________;二圆上动点到定直线的距离的最值问题例2 圆012222=+--+y x y x上的点到直线2=-y x 距离的最大值是_______________;变式:已知P 是圆122=+y x上的一点,Q 是直线052:=-+y x l 上的一点,求PQ 最小值;三圆的切线长最值问题例3 从点Pm,3向圆C:()()12222=+++y x 引切线,则切线长的最小值为_____________;变式:由直线2+=x y 上的点向圆()()12y 422=++-x 引切线,怎切线的最小值为____________;四与圆的弦长有关的最值问题例4 在圆06222=--+y x y x 内,过点E0,1的最长弦和最短弦分别是AC 和BD,则四边形ABCD 的面积为_______________;变式:已知圆O 的方程是01028y 22=+--+y x x,过点M3,0的最短弦所在的直线方程是_____;五圆中“斜率”最值问题例3 在平面直角坐标系xOy 中,圆C 的方程为0158y 22=+-+x x ;若直线2y -=kx 上至少存在一点,使得以改点为圆心,1为半径的圆与圆有公共点,则k 的最大值是_________________;变式:如果实数x,y 满足等式(),1222=+-y x 那么13y -+x 的取值范围________________;。