第11章 两因素及多因素方差分析
- 格式:ppt
- 大小:1.07 MB
- 文档页数:50
多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。
SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。
在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。
该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。
但也可以通过方差齐次性检验选择均值比较结果。
因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。
因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。
固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。
[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。
图5-7 多因素方差分析窗口3)设置分析变量设置因变量:在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。
设置因素变量:在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。
可以选择多个因素变量。
由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。
设置随机因素变量:在左边变量列表中选“重复”变量,用向右拉按钮移到“到Random Factor(s)”框中。
可以选择多个随机变量。
设置协变量:如果需要去除某个变量对因素变量的影响,可将这个变量移到“Covariate(s)”框中。
多因素方差分析1. 基本思想:用来研究两个及两个以上控制变量是否对观测变量产生显著影响。
可以分析多个控制变量单独作用对观测变量的影响(这叫做主效应),也可以分析多个控制因素的交互作用对观测变量的影响(也称交互效应),还可以考虑其他随机变量是否对结果产生影响,进而最终找到利于观测变量的最优组合。
根据观测变量(即因变量)的数目,可以把多因素方差分析分为:单变量多因素方差分析(也叫一元多因素方差分析)与多变量多因素方差分析(即多元多因素方差分析)。
一元多因素方差分析:只有一个因变量,考察多个自变量对该因变量的影响。
例如,分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。
利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。
多元多因素方差分析:是对一元多因素方差分析的扩展,不仅需要检验自变量的不同水平上,因变量的均值是否存在差异,而且要检验各因变量之间的均值是否存在差异。
例如,用四个班级学生分别对两种教材、两种教学方法进行试验,除了要考虑着两种教材、两种教学方法的四种搭配以外,还要考虑四个班级学生的学习能力这些因素。
2. 原理:通过计算F统计量,进行F检验。
F统计量是平均组间平方和与平均组内平方和的比。
尸$控制您童H卜尸6小=的机竇量这里,把总的影响平方和记为SST它分为两个部分,一部分是由控制变量引起的离差,记为SSA组间离差平方和),另一部分是由随机变量引起的SS(组内离差平方和)。
即SST=SSA+SS组间离差平方和SSA是各水平均值和总体均值离差的平方和,反映了控制变量的影响。
组内离差平方和是每个数据与本水平组平均值离差的平方和,反映了数据抽样误差的大小程度。
通过F值看出,如果控制变量的不同水平对观测变量有显著影响,那观测变量的组间离差平方和就大,F值也大;相反,如果控制变量的不同水平没有对观测变量造成显著影响,那组内离差平方和就比较大,F值就比较小。
两因素方差分析一、两因素方差分析中的基本概念1. 例1-1(pp1):四种疗法治疗缺铁性贫血后红细胞增加数服用A药,则A=2,否则A=1;服用B药,则B=2,否则B=1两因素Stata数据输入格式命令anova x a b a*b其中a 表示A药疗效的主效应,b表示B药疗效的主效应,a*b表示A药与B药对疗效的交互作用结果如下结果表明:对于 =0.05而言H10:没有交互作用并且A药和B药疗效的主效应都没有差异H11:有交互作用或A药主效应有差异或B药主效应有差异F Model=98.75,P值<0.05,因此认为模型是有效的(或有交互作用或有主效应)。
H20:没有交互作用H21:有交互作用F A×B=36.75,P值=0.0003<0.05,因此A药与B药的疗效有交互作用,并且有统计意义。
H30:A药没有差异H31:A药主效应有差异F A=168.75,P值<0.05,A药的主效应有统计意义H40:B药没有差异H41:B药主效应有差异F B =90.75,P 值<0.05,B 药的主效应也有统计意义。
问题:模型是什么? 模型:..()ab a b ab μμαβαβ=+++其中μab 是x 的总体均数,αa 称为A 因素的主效应,βb 称为B 因素的主效应,(αβ)ab 称为A 因素和B 因素对因变量x(观察指标变量)的交互作用。
2. 主效应的意义A 药B 药平均A 主效应表示未服用服用 未服用 μ11μ1211121.2μμμ+=1...1μμα=+服用 μ21 μ22 21222.2μμμ+= 2...2μμα=+ 平均1121.12μμμ+= 1222.22μμμ+= 11122122..4μμμμμ+++= B 主效应 .1..1μμβ=+ .2..2μμβ=+称α1和α2为A 因素的主效应,β1和β2为B 因素的主效应。
并且可以验证:α1+α2=0(即:α1=-α2)以及β1+β2=0(β1=-β2) 若α1=α2(即α1=α2=0),则对应A 因素的主效应没有作用。
双因素方差分析结果解读双因素方差分析(Two-wayANOVA)是一种分析数据的统计方法,它可以检验同一总体的两个或多个变量之间的差异。
双因素方差分析的一个重要特点是它可以检验基于不同组别、不同资源或者不同情况下同一个总体上的差异。
它可以检验在多个组别之间存在差异、或者在不同组别之间存在偏差的情况。
本文将通过介绍双因素方差分析的原理、分析方法、结果解读方法,帮助读者更好地解读双因素方差分析的结果。
首先,双因素方差分析的原理是涉及两个不同的自变量,即因变量和一个或多个自变量。
因变量是一个连续的响应变量,而自变量则分为定类的自变量和定序的自变量,根据不同的实验需求采用不同的变量。
例如,定类的自变量可以用于比较基于性别或不同药物治疗后被试者的反应,定序的自变量则可用于比较基于疗程的不同反应。
其次,双因素方差分析需要构建一个双因素的实验单元,即一个自变量和一个因变量的实验设计,它可以确定每个组别之间的比较,比如在不同性别和不同处方药物治疗下被试者的反应。
双因素方差分析可以检验两个或多个因变量是否相对独立,以及独立或不独立的因变量是否存在差异。
最后,双因素方差分析的结果解读是比较重要的一步,它可以有效地解释出双因素实验单元下的差异或偏差,帮助研究者更好地做出他们的决策。
通常,根据双因素方差分析的结果可以检测出两个或多个自变量的差异,以及基于性别、时间、处方药物治疗等不同情况下的被试者的反应等。
只有当双因素方差分析的F值超过某一显著性水平的时候(通常为0.05或0.01),双因素方差分析的结果才被认为是显著的,可以通过结果解释和决策。
综上所述,双因素方差分析是一种非常有用的统计方法,可以检验同一总体的两个或多个变量之间的差异。
其中双因素方差分析原理,分析方法,以及结果解读方法都非常重要,有助于我们在解决实际问题时更好地解读双因素方差分析的结果,识别出不同组别,或者在不同组别之间存在的差异,从而发现新的实验结果,增加研究的学术价值。
多因素方差分析公式了解多因素方差分析的计算公式多因素方差分析公式——了解多因素方差分析的计算公式多因素方差分析是一种统计方法,用于分析多个因素对观察结果的影响。
它通过比较不同因素水平下的观察值差异来判断这些因素对实验结果的影响程度。
在多因素方差分析中,我们需要了解与计算一些重要的公式。
1. 多因素方差分析的总平方和(SS_total)公式:SS_total = SS_between + SS_within其中,SS_total是总平方和,表示所有观测值与总均值之间的偏离程度;SS_between是组间平方和,表示不同因素水平下的观测值与总均值之间的偏离程度;SS_within是组内平方和,表示同一因素水平下的观测值与该水平下的均值之间的偏离程度。
2. 多因素方差分析的组间平方和(SS_between)公式:SS_between = ∑(ni * (μi - μ)²)其中,ni是第i组的观测值个数,μi是第i组观测值的均值,μ为所有观测值的总均值。
3. 多因素方差分析的组内平方和(SS_within)公式:SS_within = ∑∑((Xij - μi)²)其中,Xij表示第i组的第j个观测值,μi为第i组观测值的均值。
4. 多因素方差分析的组间平均平方(MS_between)公式:MS_between = SS_between / (k - 1)其中,k为不同因素水平的个数。
5. 多因素方差分析的组内平均平方(MS_within)公式:MS_within = SS_within / (N - k)其中,N为总观测值的个数。
6. 多因素方差分析的F统计量公式:F = MS_between / MS_withinF统计量用于判断不同因素水平的均值之间的差异是否显著。
若F 值大于某个临界值,则认为不同因素水平的均值存在显著差异。
通过以上公式,我们可以计算出组间平方和、组内平方和、组间平均平方、组内平均平方和F统计量,从而进行多因素方差分析。
双因素方差分析剖析在双因素方差分析中,有两个主要的因素被研究。
这些因素可以是两个不同的处理条件、两个不同的处理时间、两个不同的处理剂量等。
同时,每个因素都可以有两个或多个水平(即取值范围)。
为了进行双因素方差分析,研究人员首先需要确定研究对象和目标变量。
然后他们需要确定每个因素的水平和变量的测量方法。
例如,如果他们想要研究两种不同的药物对于治疗一种疾病的效果,他们需要确定每种药物的剂量以及测量疾病症状的方法。
接下来,研究人员需要收集数据,并进行统计分析。
在双因素方差分析中,主要的统计指标是方差和F值。
方差用来衡量不同因素和不同水平之间的差异。
F值是方差之比,用来判断不同因素之间是否存在显著差异。
进行双因素方差分析之后,研究人员可以得出结论。
如果F值大于临界值,那么可以得出不同因素之间存在显著差异的结论。
如果F值小于临界值,那么就可以得出不同因素之间没有显著差异的结论。
此外,研究人员还可以通过进行后续的多重比较来进一步分析不同因素之间的差异。
常用的多重比较方法包括Tukey方法和Bonferroni方法。
然而,双因素方差分析也存在一些限制。
首先,它只能处理两个或多个因素对于一个或多个变量的影响。
如果有更多的因素需要考虑,就需要进行更复杂的分析方法。
其次,双因素方差分析假设变量的分布是正态分布的,并且各组之间的方差是相等的。
如果数据不符合这些假设,就需要采用其他的非参数方法进行分析。
总之,双因素方差分析是一种常用的统计方法,可以帮助研究人员研究两个或更多因素对于一个或多个变量的影响。
它可以帮助确定不同因素之间的重要性,并且可以探索不同因素之间的相互作用。
然而,研究人员需要在收集数据和进行分析时注意假设的前提条件,并且需要根据具体情况选择合适的统计方法。