双因素和多因素方差分析b
- 格式:ppt
- 大小:534.50 KB
- 文档页数:69
第九章双因素和多因素方差分析引言方差分析是一种常用的统计方法,用于比较两个或多个组之间的差异。
双因素和多因素方差分析是方差分析的扩展,允许考虑两个或多个自变量对因变量的影响。
本文将介绍双因素和多因素方差分析的概念、假设检验、模型构建等内容。
双因素方差分析双因素方差分析主要用于对两个自变量对因变量的影响进行分析。
其中一个自变量称为因子A,另一个自变量称为因子B。
通过双因素方差分析,我们可以了解到两个自变量对因变量的主效应以及交互效应。
假设检验进行双因素方差分析时,我们需要对两个自变量的主效应和交互效应进行假设检验。
主效应是指每个因子对因变量的影响,交互效应是指两个因子之间是否存在相互影响。
在进行双因素方差分析时,我们需要提出以下假设:•零假设H0: 两个因子对因变量没有主效应和交互效应•备择假设H1: 至少一个因子对因变量有主效应或交互效应然后,我们可以通过方差分析结果的显著性检验来判断是否拒绝零假设。
模型构建双因素方差分析可以通过构建线性模型来进行。
通常,我们使用以下模型进行双因素方差分析:Y = μ + α + β + (αβ) + ε其中,Y表示因变量,μ表示总体均值,α表示因子A的主效应,β表示因子B的主效应,(αβ)表示交互效应,ε表示误差。
通过对数据进行拟合并计算模型中的各个参数,我们可以得到双因素方差分析的结果。
多因素方差分析多因素方差分析是对多个自变量对因变量的影响进行分析。
多因素方差分析可以包含两个以上的自变量,并且可以考虑每个自变量的主效应和交互效应。
假设检验进行多因素方差分析时,我们同样需要对每个自变量的主效应和交互效应进行假设检验。
假设检验的步骤与双因素方差分析类似。
模型构建多因素方差分析的模型构建与双因素方差分析类似,但是需要考虑多个自变量的影响。
Y = μ + α1 + α2 + … + αn + β + (αβ) + ε其中,Y表示因变量,μ表示总体均值,α1, α2, …, αn表示各个自变量的主效应,β表示交互效应,(αβ)表示两个或多个自变量之间的交互效应,ε表示误差。
组间差异性分析的统计方法
组间差异性分析是统计学中一种常用的方法,用于比较两组或多组数据的差异是否显著。
常用的组间差异性分析统计方法有下面几种:
1.单因素方差分析(ANOVA):单因素方差分析用于比较三个或三个以上组
之间的平均值是否有显著差异。
2.双因素方差分析(Two-way ANOVA):双因素方差分析用于比较两个因素
对结果的影响。
3.t 检验:t 检验用于比较两组数据的平均值是否有显著差异。
4.秩和检验(Wilcoxon rank-sum test):秩和检验用于比较两组数据的中位
数是否有显著差异。
5.Mann-Whitney U 检验:Mann-Whitney U 检验与秩和检验类似,也用于
比较两组数据的中位数是否有显著差异。
这些统计方法都可以用于比较两组或多组数据之间的差异是否显著,但在使用时应根据数据的性质和研究目的选择合适的方法。
SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。
一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。
研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。
另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。
换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。
也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。
注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。
在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。
这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。
因此,交互作用也可以看做是对单独效应间是否存在差异的检验。
在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。
研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。
部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。
双因素方差分析一、双因素方差分析的含义和类型(一)双因素方差分析的含义和内容在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。
例如上一节中饮料销售量的例子,除了关心饮料颜色之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因,采用不同的推销策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位,在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解,接受该产品。
在方差分析中,若把饮料的颜色看作影响销售量的因素A,饮料的销售地区看作影响因素B。
同时对因素A和因素B进行分析,就称为双因素方差分析。
双因素方差分析的内容包括:对影响因素进行检验,究竟一个因素在起作用,还是两个因素都起作用,或是两个因素的影响都不显著。
双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性。
(二)双因素方差分析的类型双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A 和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。
例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。
有交互作用的双因素方差分析已超出本书的范围,这里介绍无交互作用的双因素方差分析。
1.无交互作用的双因素方差分析。
无交互作用的双因素方差分析是假定因素A和因素B的效应之间是相互独立的,不存在相互关系;2.有交互作用的双因素方差分析。
有交互作用的双因素方差分析是假定因素A和因素B的结合会产生出一种新的效应。
例如,若假定不同地区的消费者对某种颜色有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景,否则,就是无交互作用的背景。
二、数据结构方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。
一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。
研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。
另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。
换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。
也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。
注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。
在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。
这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。
因此,交互作用也可以看做是对单独效应间是否存在差异的检验。
在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。
研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。
部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。
多因素⽅差分析01.前⾔在前⾯我们讲过简单的单因素⽅差分析,这⼀篇我们讲讲双因素⽅差分析以及多因素⽅差分析,双因素⽅差分析是最简单的多因素⽅差分析。
单因素分析就是只考虑⼀个因素会对要⽐较的均值产⽣影响,⽽多因素分析是有多个因素会对均值产⽣影响。
需要注意的是⼀个因素可能会有不同的⽔平值,即不同的取值。
⽐如要判断某⼀款药对某种病症有没有效果,服⽤不同的剂量效果应该是不⼀样的,虽然因素都是服药这⼀个因素,但是不同的药剂量代表不同的⽔平。
双因素(多因素)⽅差分析⼜可以分为两种,⼀种是有交互作⽤的,⼀种是没有交互作⽤的。
啥意思呢?什么是交互作⽤呢?⽐如我们⼤家所熟知的,⽜奶和药是不可以⼀起吃的,如果单独喝⽜奶有助于⾝体蛋⽩质的补充,如果单独吃药可以有助于治疗病症,但是⽜奶和药同时吃就会把两者的作⽤抵消掉。
这种两者之间的相互作⽤就可以理解成是交互作⽤,当然了,有的时候交互是正向呢,有的时候是负向的。
02.⽆交互作⽤⽅差分析现在有如下⼀份不同品牌不同地区的产品销量数据表,想要看⼀下不同品牌和不同地区这两个因素是否对销量有显著性影响:我们先来看看⽆交互作⽤的双因素⽅差分析具体怎么做呢,所谓的⽆交互也就是假设品牌和地区之间是没有交互作⽤的,相互不影响,只是彼此单独对销量产⽣影响。
前⾯单因素⽅差分析中,我们是⽤F值去检验显著性的,多因素⽅差分析也同样是⽤F值.F = 组间⽅差/组内⽅差。
对于没有交互作⽤的多因素,可以单纯理解为多个单因素。
也就是你可以单独去看品牌对销量的影响,然后再单独去看地区对销量的影响。
那单独怎么看呢?这就回到了我们前⾯讲过的单因素⽅差分析。
我们先来计算品牌的组内平⽅和:SSA = (每个品牌的均值 - 全部销量均值)^2*每个品牌内样本数 = (344.20-328.45)^2*5 + (347.80-328.45)^2*5 + (337.00-328.45)^2*5 + (284.80-328.45)^2*5 = 13004.55我们再来计算地区的组内平⽅和:SSB = (每个地区的均值 - 全体销量均值)^2*每个地区内样本数 = (339.00-328.45)^2*4 + (330.25-328.45)^2*4 + (339.25-328.45)^2*4 + (318.25-328.45)^2*4 = 2011.7接着我们来计算全部平⽅和:SST = (每个值-总体均值)^2 = 17888.95除此之外还有⼀个平⽅和:SSE = SST - SSA - SSB这部分是除品牌和地区以外的其他因素所产⽣的,称为随机误差平⽅和。