一元一次方程的解法(二)——去括号与去分母(第2课时)导学案
- 格式:doc
- 大小:38.00 KB
- 文档页数:2
3.3 解一元一次方程(二)——去括号与去分母第2课时去分母一、新课导入1.课题导入:英国伦敦博物馆保存着一部极其珍贵的文物——纸草书.这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.这部书中记载了许多有关数学的问题,其中就有如下这道著名的求未知数的问题.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?如果设这个数为x,那么你能列出方程吗?你会解这个方程吗?今天我们就一起通过这个问题继续学习一元一次方程的解法——去分母.2.三维目标:(1)知识与技能会把实际问题建成数学模型,会用去分母的方法解一元一次方程.(2)过程与方法通过列方程解决实际问题,让学生逐步建立方程思想;通过去分母解方程,让学生了解数学中的“化归”思想.(3)情感态度让学生了解数学的渊源及辉煌的历史,激发学生的学习热情.3.学习重、难点:重点:解含有分数系数的方程,归纳解此类一元一次方程的基本步骤.难点:去分母的方法及步骤.二、分层学习1.自学指导:(1)自学内容:探究解方程时,去分母的方法.(2)自学时间:5~8分钟.(3)自学要求:在探究提纲的指引下,认真思考相关问题,弄清楚去分母是怎样操作的.(4)自学参考提纲:①在导入课题的问题中,涉及哪些相等关系?应怎样设未知数?如何根据相等关系列方程?②用已掌握的一元一次方程的解法求出所列方程的解.③这个方程中有些系数是分数,能否通过化去分母,把系数化为整数,从而使解方程中的计算更简便些?根据等式的性质2;等式两边乘同一个数,结果仍相等,因此,只需把方程两边同时扩大适当的倍数,要化去所有的分母,两边所乘的数必须是各分母的倍数,若又要使方程的系数绝对值尽可能地小,于是两边所乘的数只能是各分母的最小公倍数.④按③中分析的方法化去分母,把系数化为整数再解所得的方程,仔细体验两种解法的优劣.2.自学:同学们在探究提纲的指引下进行探究学习.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生对探究提纲的完成情况,倾听他们的疑点交流,把握存在的问题.②差异指导:根据学情反馈有针对性地进行分层,分类指导,指导学生弄清楚去分母的依据,具体操作程序等.(2)生助生:小组内相互交流、探讨,互相帮助解疑难.4.强化:(1)列方程所需的等量关系.(2)①去分母的依据:等式的性质2;②去分母的方法:两边同乘各分母的最小公倍数;③去分母的作用:把系数化为整数,简化计算.1.自学指导:(1)自学内容:教材第96页至第97页例3之前的内容..(2)自学时间:5分钟.(3)自学要求:认真阅读框图,关注解方程每一步的变形方法依据和结果,体验计算过程细节及解方程的一般步骤.(4)自学参考提纲:①从框图中可以归纳出解一元一次方程的一般步骤有:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.这些变形的依据是等式的基本性质和运算律.②在去分母时,a.方程两边所乘的数是各分母的最小公倍数;b.不含分母的项(如左边的“-2”)为什么也要乘呢?c.当分子是多项式时,去掉分母后,为什么要把原来的分子加上括号括起来?b.为了保持等式两边相等;c.分数线具有括号的作用.③解下列方程:a.12x +-1=2+24x - b.3x+12x -=3-213x - 解:a.x=4 b.x=23252.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师深入课堂了解学生自学的进展和存在的问题,尤其是对提纲第②题中三个问题的理解和把握情况.②差异指导:对学习中有疑点的学生或变形中出现偏差的学生进行点拨引导.(2)生助生:小组内相互交流、纠错.4.强化:(1)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.(2)去分母应注意的问题:①两边同乘各分母的最小公倍数;②方程两边的每一项都要乘到,尤其是不含分母的项不能漏乘;③去掉分母后,对于分子是多项式的项,分子要加上括号.(3)练习:解下列方程. ①12x +-2=4x ;②322x +-1=214x --215x +. 解:①x=6;②x=-928.三、评价1.学生的自我评价:让部分学生交流自己在学习中的表现和研讨学习过程中的得失.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的积极表现和存在的不足作客观点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时的教学内容有关去分母解方程,与前面去括号解方程相比,只是略微增加了一步,所以本课时开头采用了引入旧知的方法帮助学生衔接,接着以问题的形式进行师生互动,以帮助学生真正掌握去分母解方程的方法.教学过程中,教师要随时与学生保持互动,以了解学生的掌握情况.此外,还应让学生多练习,以达到熟能生巧的程度.一、基础巩固1.(10分)解方程2x-1=13x -时,去分母正确的是(B ) A.3x -1=2(x -1) B.3x -6=2(x -1)C.3x -6=2x -1D.3x -3=2x -12.(20分)解方程:1-25x +=12x -. 解:第一步去分母,得10-2(x+2)=5(x-1).第二步去括号,得10-2x-4=5x-5.第三步移项,得-2x-5x=-5-10+4.第四步合并同类项,得-7x=-11.第五步系数化为1,得x=117. 3.(40分)解下列一元一次方程.二、综合应用4.(20分)列方程解答下面问题.y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y. 解:根据题意,得12(3y+1.5)= 14(y-1). 去分母,得2(3y+1.5)=y-1.去括号得6y+3=y-1.移项得6y-y=-1-3. 合并同类项得5y=-4.系数化为1得y=-45.三、拓展延伸5.(10分)有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50 m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m 2墙面,每名一级技工比二级技工一天多粉刷10 m 2墙面,求每个房间需要粉刷的墙面面积.解:设每个房间需要粉刷的墙面面积为x m 2. 则8503x -=10405x ++10解得x=52. 答:每个房间需要粉刷的墙面面积为52 m 2.学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
3.3.2 一元一次方程的解法(二)去分母导学案一、学习目标:1.掌握含有分数系数的一元一次方程的解法.2.熟练利用解一元一次方程的步骤解各种类型的方程.重点:含有分数系数的一元一次方程的解法.难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.二、学习过程:自学导航英国伦敦博物馆保存着一部极其珍贵的文物--纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题,下面的问题就是书中一道著名的求未知数的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.你能解出这道方程吗?把你的解法与其他同学交流一下,看谁的解法好.尝试解一解:解方程:3132232. 2105+-+-=-x x x思考:1. 若使方程的系数变成整系数方程,方程两边应该同乘以什么数?2. 去分母时要注意什么问题?【归纳】解一元一次方程的一般步骤包括:___________、___________、__________、_____________ ___、_____________等.通过这些步骤可以使以x为未知数的方程逐步向着x=a的形式转化,这个过程主要依据等式的基本性质和运算律等.考点解析考点1:利用去分母解一元一次方程★★★ 例1.解下列方程: (1)2x−13+1=x+22; (2)x−14-2=3x+26; (3)13(1-2x)=27(3x+1); (4)x−12+1=x−13-2x+34.【迁移应用】 1.在解方程3y−14-1=2y+76时,为了去分母,最好将方程两边同乘( )A.4B.6C.12D.16 2.将方程x2-x+14=1去分母,下列变形正确的是( )A.2x -x+1=1B.2x -(x+1)=1C.2x -x+1=4D.2x -(x+1)=4 3.解下列方程: (1)3x−12=4x+25; (2)1-3x−14=3+x 2; (3)2x−13-x=2x+14; (4)3x−22-(2-x)=x.考点2:构造一元一次方程求值★★ 例2.已知式子x+33-1与2x−17,当3x 取何值时,它们的值互为相反数.【迁移应用】 1.如果13a+1与2a−73的值互为相反数,那么a 的值为( )A.43B.10C.-43D.-10 2.若式子x+13与2−x 2的值的和等于2,则x 的值为______. 3.已知a+34比2a−37的值大1,求2-a 的值.考点3:解分母含小数的一元一次方程★★★ 例 3.解方程:0.4x+10.5=0.02x+0.030.03+2.【迁移应用】 依据下列解方程0.3x+0.50.2=2x−13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为3x+52=2x−13.(______________)去分母,得3(3x+5)=2(2x -1)(_____________) 去括号,得9x+15=4x -2(_________).(______),得9x -4x=-2-15(_______________). 合并同类项,得5x=-17(________________). (___________),得x=-175.(_______________)考点4:利用整体思想解一元一次方程★★★★ 例4.阅读下列材料:请参照这种方法解方程3(x+1)-13(x -1)= 2(x -1)-12(x+1).【迁移应用】 解下列方程:(1)3(7x -5)-13(5-7x)+17(7x -5)=7(5-7x); (2)5(2x+3)-34(x -2)=2 (x -2)-12(2x+3).考点5:一元一次方程的错解问题★★★★ 例5.下面是小贝同学解方程x−13-3x−24=1的过程,请认真阅读并完成相应问题. 解:去分母,得4(x -1)-3(3x -2)=12.………第一步去括号,得4x -4-9x+6=12. ………………第二步 移项,得4x -9x=12+6-4.……………………第三步 合并同类项,得-5x=14.……………………第四步 系数化为1,得x=-145…………………………第五步(1)以上解题过程中,第一步是依据____________进行变形的; 第二步是依据________进行变形的;(2)第______步开始出现错误,这一步错误的原因是_______________; (3)请写出该方程的正确解答过程.【迁移应用】王老师给同学们出了一道解方程的题目:x+13-x−16=1.小明同学的解题过程如下:去分母,得2(x+1)-x -1=6. ① 去括号,得2x+1-x -1=6. ① 移项,得2x -x=6-1+1. ① 合并同类项,得x=6. ①请你指出小明的解题过程从哪步开始出现错误?并将正确的解题过程写下来.。
第2课时 解一元一次方程(二)教学目标1.准确并熟练的解一元一次方程;2.熟练地掌握一元一次方程的解法;3.使学生进一步理解在解方程时所体现出的化归思想方法;教学重点和难点1、进一步复习巩固解一元一次方程的解法步骤,2、灵活的运用解方程的方法。
教学手段引导——活动——讨论教学方法启发式教学教学过程下面方程的解法对吗?若不对,请改正 。
解方程:3141136x x --=-解:去分母()132-x 去括号 14126--=-x x移 项 1214x 6-+=+x合 并 210=x系数化为1 51=x 让学生通过观察发现其中的错误并进行改正,进一步熟悉解方程的步骤,为下面的环节做好铺垫。
解方程1、解方程的步骤:去分母——去括号——移项——合并同类项——系数化为一2、即学即练(1)2(x+3)-5(1-x)=3(x -1)(2)37524123--=+y y (加强解方程准确率的训练,通过练习,同桌交流总结出有关每一步的注意事项。
)3、归纳解一元一次方程的注意事项:(1)分母是小数时,根据分数的基本性质,把分母转化为整数;(2)去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;(3)去括号时,不要漏乘括号内的项,不要弄错符号;(4)移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;(5)系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;(6)不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
勇往直前1132231的差是与时,代数式、当+-=x x x=+-x x x 是互为相反数,则与、若代数式223122互为倒数的值与时,代数式、当3313x x x ++= (设计意图:灵活应用方程思想解决代数问题)(设计意图:培养学生发现问题解决问题的能力)感悟与收获1. 解一元一次方程的一般步骤及简单应用作业布置1.教材中习题3.3中选取。
人教版七年级上册3.3解一元一次方程(二)—-去括号与去
分母教学设计
一、教学目标
1.了解去括号和去分母的基本概念和方法。
2.掌握去括号和去分母解一元一次方程的方法。
3.能够通过练习题巩固所学知识。
二、教学重点
1.去括号与去分母的基本概念和方法。
2.解一元一次方程时的去括号和去分母方法。
三、教学难点
1.基于去括号和去分母解一元一次方程。
2.理解并应用去括号和去分母原理。
四、教学方法
本节课采用讲授、练习、讨论以及解决实际问题等教学方法。
五、教学过程
1.引入
板书题目:“x+6=12”,请同学们解方程。
询问同学们的解法,引导同学们思考如何更简单地解方程。
1。
第三章一元一次方程3. 3 解一元一次方程(二)教学设计第 2 课时本节内容在全书及章节的地位:《解一元一次方程——去分母》是初中七年级数学人教版上册第三章第三节. 前面我们学习了《解一元一次方程——去括号》,这节是解一元一次方程的延伸及应用. 通过这节我们对解一元一次方程有了更新的步骤. 它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解实际问题做了铺垫. 所以说这节课内容非常重要.1.掌握去分母解方程的方法,并总结解方程的步骤;灵活运用解方程的一般步骤,提高综合解题能力.2.通过去分母解方程,进一步体会去括号和添括号法则;合理地进行方程的变形,体会利用方程的特点灵活、简洁地解一元一次方程的方法.3.感受等式性质的作用,增进对解方程的理解.【教学重点】理解去分母的意义和掌握解一元一次方程的一般步骤.【教学难点】灵活运用各种方法解各种形式的一元一次方程.收集相关文本资料,相关图片,相关动画等碎片化资源.一、创设情境,引入新知◆教材分析◆教学目标◆教学重难点◆◆课前准备◆◆教学过程问题1:英国伦敦博物馆保存着一部极其珍贵的文物——纸草书. 这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成. 这部书中记载了许多有关数学的问题. 其中有如下一道著名的求未知数的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.如果设这个数为 x ,那么你能列出方程吗?你会解这个方程吗?今天我们就一起通过这个问题继续学习一元一次方程的解法——去分母.二、合作交流,探究新知一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.(1)题中涉及到哪些数量关系和相等关系?(2)引进什么样的未知数,根据这样的相等关系列出方程?学生活动:小组合作探究,找出相等关系列出方程.教师总结:(1)本题的相等关系:四个量相加等于33.(2)列方程得21133327x x x x +++= 我们如何来解这个方程呢?(学生可能会先合并同类项,但这里的项的系数出现了分数,不方便计算)如果能化去分母,把系数化成整数,则会更简便些. 根据等式的性质2,这个方程两边都乘以各分母的最小公倍数42,得{}211424242424233327x x x x ⨯+⨯+⨯+⨯=⨯, 即28216421386x x x x +++=,解得138697x =. 可以看出若直接合并计算量较大,因此我们需要掌握新的解方程方法——去分母.为了更全面的讨论问题,我们再以方程 解方程:31322322105x x x +-+-=-. 学生活动:结合问题1解方程的思路,小组合作探究.师生合作探究:很明显第一步考虑先去掉各项的公母,去分母应根据什么性质,本题要达到去分母的目的需乘以什么数?方程两边的项各是哪几个?每个项是否都要乘以这个数?教师总结:根据等式的性质2,方程两边的项:31322322105x x x +-+-,,,,同乘以所有分母的最小公倍数10,得3132231010210102105x x x +-+⨯-⨯=⨯-⨯ 下面的框图表示了解这个方程的流程.系数化为1思考:解含分数系数的一元一次方程的步骤包括哪些?1. 解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项,系数化为1.2. 通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等.三、运用新知例1 解下列方程:(1)121224x x +--=+; (2)1213323x x x --+=-. 学生活动:在独立完成的前提下,小组讨论结果,并总结可能的出错点.31322322105x x x +-+-=- ⎪⎪⎭⎫ ⎝⎛↓母的最小公倍数方程两边乘各分去分母 ()()()53110232223x x x +-⨯=--+ 去括号↓ 155203246x x x +-=--- 移项↓ 153426520x x x -+=---+ 合并同类项↓ 167x =716x =师生合作探究:使以x为未知数的方程逐步向着x=a的形式转化,第一步可以考虑步骤,各个分母的最小公倍数是,项容易漏乘.教师总结:解:(1)去分母(方程两边乘4),得()()21482x x+-=+-.去括号,得22482x x+-=+-合并同类项,得312x=.系数化为1,得4x=.(2)去分母(方程两边乘6),得()()183118221x x x+-=--.去括号,得18331842x x x+-=-+.移项,得18341823x x x++=++.合并同类项,得2523x=.系数化为1,得2325x=.例2解方程分析:原方程的分子、分母中都含有小数,直接去分母不方便. 此时,可以先根据分数的基本性质,将小数化为整数后再去分母.例3某中学组织团员到校外参加义务植树活动,一部分团员骑自行车先走,速度为9 km/h,40分钟后其余团员乘汽车出发,速度为45 km/h,结果他们同时到达目的地,则目的地距学校多少千米?分析:设目的地距学校x km.1. 骑自行车所用时间为x9h,乘汽车所用时间为x45h;2. 问题中的相等关系是什么?3. 根据1、2,试解决这个问题.四、巩固新知五、归纳小结1.本节课主要学习了去分母的方法,其依据是等式的性质2,等式两边(小心漏乘)同乘分母的最小公倍数.2.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.去分母解一元一次方程需要注意的问题:1.去分母的依据是等式的性质;2.去分母的方法:(1)找出各分母的最小公倍数;(2)方程两边同乘这个数,把所有得分母都约去.3.去分母时应注意的问题:(1)分子如果是多项式,要先加上括号,再去分母;(2)整数项不要漏乘各分母的最小公倍数,特别是整数1;(3)分母中含有小数时,一般先利用分数的性质将其转化为整数,再去分母.略.◆教学反思。
3第2课时利用去分母解一元一次方程精品教案(大赛一等奖作品3、3解一元一次方程解(二),去括号与去分母第2课时利用去分母解一元一次方程学习目标:1、会从实际问题中抽象出数学模型,会用一元一次方程解决一些实际问题;2、通过观察、讨论等活动经历从实际中抽象数学模型的过程。
学习重点:弄清题意,用列方程的方法解决实际问题。
学习难点:寻找实际问题中的等量关系,建立数学模型。
学习要求:1、阅读教材P97-P98的例2、例3;2、限时25分钟完成本导学案(独立或合作);3、课前在组内交流展示。
4.组长根据组员的完成情况进行等级评价。
一、自主学习:1、解方程:(1)-4[-3(+2)-5]=12;(2)8(3-1)-9(5-11)=2(2-7)+302、阅读教材例2,并完成下列填空:(1)一般情况下,可认为这艘船往返的路程相等,即:顺水速度____顺水时间=逆水速度_____逆水时间。
(2)顺水速度=_______________________,逆水速度=___________________________。
(3)寻找相等关系列方程:设船在静水中的速度千米/时,则顺流速度为___________,逆流速度为___________,顺流航行的路程为______________,逆流航行路程为_____________________,根据往返路程相等,可列方程为:________________________________________,解出并作答。
反思:若要求出甲、乙两码头的路程,又如何解?提示:(1)可间接设未知数的方法;想一想:该怎样设?(2)可直接设未知数的方法。
即:设甲、乙两码头的路程千米,则顺水速度为_________,逆水速度为____________,静水速度为______________,或表示为___________________,从而列出方程为_______________________________,并解出来。
3.3.2解一元一次方程(二)----去分母学习目标:1、会用去分母的方法解一元一次方程,进一步体会化归思想;2、知道解一元一次方程的一般步骤,能熟练地解一元一次方程;重点难点:解含有分母的一元一次方程。
学习过程:问题1:一个数的61与1的和等于它的21与3差,求这个数是多少? 解:设这个数为x ,则这个数的61与1的和可表示成 , 它的21与3差可表示成 度,依题意可得请用前面所学解方程的方法来解这个方程思考:(1)上面方程中的未知数的系数都是 数;(2)如何将上面方程中的未知数的系数化为整数?(3)把未知数的系数化为整后再解此方程(4)比较两种不同的解法,哪种比较简单?归纳:当方程中某些项的系数出现分数时,我们可以通过等式的性质 将方程两边同时乘各分母的 来把系数化为整数,把这一变化叫做去分母。
注意:去分母时,如何分子是多项式时,应添加 ,这体现了分数线的双重意义,既是 ,又是 。
归纳解方程的步骤: , , , , 。
解一元一次方程的注意事项:巩固练习:1、判断下列解方程过程对吗?如不对,请改正。
解方程:)1(252421--+=-x x x 解:去分母,得:)1(2)24(2)1(5--+=-x x x ①去括号,得:224815--+=-x x x ②移项,得: 124258+-=++x x x ③合并同类项,得: 315=x ④系数化为1,得 : 5=x ⑤2、解下列方程(1)31512+=+x x (2) 5221y y y --=--(3)422121x x -+=-- (4) 32213415x x x --+=-小结:本节课学习了用去分母的方法解一元一次方程。
需要注意的是:(1)去分母时不要忘记添括号,不漏乘不含分母的项;(2)解方程的五个步骤在解题时不一定都需要,可根据题意灵活的选用。
作业:课本P98页习题3.3第 3(3)(4)、2(1)、5、6、7题 课后反思:。
第三章一元一次方程3.3 解一元一次方程(二)——去括号与去分母第2课时一、教学目标【知识与技能】1.掌握含有分母的一元一次方程的解法;2. 进一步掌握利用一元一次方程解决实际问题【过程与方法】经历分析“工程问题”中数量关系过程,培养分析问题和解决问题的能力.【情感态度与价值观】1.归纳解一元一次方程的步骤,体会转化的思想方法。
2. 让学生了解数学的渊源及辉煌的历史,激发学生的学习热情;二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】掌握含有以常数为分母的一元一次方程的解法.【教学难点】加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.五、课前准备教师:课件、三角尺、等式的性质等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课下面是一道著名的求未知数的问题. (出示课件2-4)一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.教师问1:思考题中涉及到哪些数量关系和相等关系?学生回答:它的三分之二+它的一半+它的七分之一+它的全部=33教师问2:引进什么样的未知数,能根据这样的相等关系列出方程呢?学生回答:设这个数为x. 根据题意,得23x+12x+17x+x=33.教师问3:这个方程与前面学过的一元一次方程有什么不同?学生回答:这个方程含有分母.教师:怎样解这个方程呢?这节课我们就来学习怎样解答这类方程。
(二)探索新知1.师生互动,探究含有分母的一元一次方程的解法解方程:3x+12−2=3x−210−2x+35(出示课件6)教师问4:若使方程的系数变成整系数方程,方程两边应该同乘什么数?学生讨论后回答:两边同乘以分母的最小公倍数.教师问5:去分母时要注意什么问题?学生回答:分子是多项式的要加括号,等式里的整数不要漏乘.教师问6:哪位同学试着解答一下?学生小组讨论后,师生共同解答如下:(出示课件7)教师问7:下列方程的解法对不对?如果不对,你能找出错在哪里吗?(出示课件8)解方程:2x−13−x+22=1解:去分母,得 4x -1-3x + 6 = 1 ①移项,合并同类项,得 x=4 ②学生回答:总结点拨:解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
3 解一元一次方程(二)——去括号与去分母【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅3.3 解一元一次方程(二)——去括号与去分母第1课时教学目标1.知识与技能掌握用一元一次方程解决实际问题的方法,会用分配律,去括号解决关于含括号的一元一次方程.2.过程与方法.经历应用方程解决实际问题的过程,发展分析问题,解决问题的能力,进一步体会方程模型的作用.3.情感态度与价值观关注学生在建立方程和解方程过程中的表现,发展学生积极思考的学习态度以及合作交流的意识.重、难点与关键1.重点:列方程解决实际问题,会解含有括号的一元一次方程.2.难点:列方程解决实际问题.3.关键:建立等量关系.教具准备投影仪.教学过程一、引入新课我们已经学习了运用一元一次方程解决一些比较简单的实际问题.本节继续讨论如何列、解一元一次方程的问题.当问题中数量关系较复杂时,列出的方程的形式也会较复杂,解方程的步骤也相应更多些.问题:某工厂加强节能措施,•去年下半年与上半年相比,•月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?你会用方程解这道题吗?教师操作投影仪,提出问题,学生思考,并与同伴交流,探索列方程思路.在学生充分思考、交流后,教师引导学生作以下分析:1.本问题的等量关系是什么?2.如果设上半年每月平均用电x度,那么怎样表示下半年每月平均用电量、上半年共用电量和下半年共用电量.3.根据等量关系,列出方程.4.怎样解这个方程.思路点拨:本问题的等量关系是:上半年用电量(度)+下半年用电量(度)=150000设上半年每月平均用电x度,则下半年每月平均用电(x-2000)度,•上半年共用电6x度,下半年共用电6(x-2000)度,列方程6x+6(x-2000)=150000去括号,得6x+6x-12000=150000移项,得6x+6x=150000+12000合并同类项,得12x=162000系数化为1,得x=13500因此,这个工厂去年上半年平均每月用电13500度.思考:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?点拨:如果设去年下半年平均每月用电x度,那么怎样列方程呢?•这个方程的解是问题的答案吗?设去年下半年平均每月用电x度,则上半年平均每月用电(x+2000)度,列方程,6(x+2000)+6x=150000.解方程,得x=11500,那么上半年平均每月用电量为11500+2000=13500(度).方法一叫直接设元法,方程的解就是问题的答案;方法二是间接设元法,方程的解并不是问题答案,需要根据问题中的数量关系求出最后答案.方程中有带括号的式子时,利用分配律去括号是常用的化简步骤.二、范例学习例1.解方程:3x-7(x-1)=3-2(x+3).解法见课本强调去括号时,要注意的事项.三、巩固练习课本第95页练习,第98页习题3.3第5题.1.解:(2)去括号,得4x+6x-9=12-x-4移项,得4x+6x+x=12-4+9合并,得11x=17系数化为1,得x=(3)去括号,得3x-24+2x=7-x+1移项,得3x+2x+x=7+1+24合并,得5x=32系数化为1,得x=6思路点拨:用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号.方程中有多重括号时,一般应按先去小括号,再去中括号,再去大括号的顺序去括号.2.解:设甲用x分登山.由甲先出发30分钟,甲、乙同时到达山顶,则乙用_______•分登山;•甲每分登高10米,则这座山高表示为______米,乙每分登高15米,•那么这座山高又表示为______米,相等关系为________.列方程10x=15(x-30)去括号,得10x=15x-450移项,得10x-15x=-450合并,得-5x=-450系数化为1,得x=90把x=90代入10x=900答:甲用90分登山,这座山高为900米.四、课堂小结本节课我们继续讨论列方程解决实际问题,同时学习了如何解含有括号的方法,解此类方程,一般地先去括号,后移项,合并,系数化为1,•并且注意去括号时易出错的问题.五、作业布置1.课本第98页习题3.3第1、2、4、6题.2.选用课时作业设计.第2课时教学内容课本第94页至第95页.教学目标1.知识与技能进一步掌握列一元一次方程解应用题的方法步骤.2.过程与方法通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3.情感态度与价值观培养学生自主探究和合作交流意识和能力,体会数学的应用价值.重、难点与关键1.重点:分析问题中的数量关系,找出能够表示问题全部含义的相等关系,•列出一元一次方程,并会解方程.2.难点:找出能够表示问题全部含义的相等关系,列出方程.3.关键:找出能够表示问题全部含义的相等关系.教学过程一、复习提问1.行程问题中的基本数量关系是什么?路程=速度×时间可变形为:速度= "www./" EMBED Equation.DSMT4 .2.相遇问题或追及问题中所走路程的关系?相遇问题:双方所走的路程之和=全部路程+原来两者间的距离.(原来两者间的距离)追及问题:快速行进路程=慢速行进路程+原来两者间的距离或快速行进路程-慢速行进路程=原路程(原来两者间的距离).二、新授例2:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,求船在静水中的平均速度.分析:(1)顺流行驶的速度、逆流行驶的速度、水流速度,船在静水中的速度之间的关系如何?顺流行驶速度=船在静水中的速度+水流速度逆流行驶速度=船在静水中的速度-水流速度(2)设船在静水中的平均速度为x千米/时,由此填空(课本第97页).(3)问题中的相等关系是什么?解:一般情况下,船返回是按原路线行驶的,因此可以认为这船的往返路程相等,由此,列方程:2(x+3)=2.5(x-3)去括号,得2x+6=2.5x-7.5移项及合并,得-0.5x=-13.5系数化为1,得x=27答:船在静水中的平均速度为27千米/时.说明:课本中,移项及合并,得0.5x=13.5是把含x的项移到方程右边,常数项移到左边后合并,得13.5=0.5x,再根据a=b就是b=a,即把方程两边同时对调,这不是移项.例3:某车间22•名工人生产螺钉和螺母,•每人每天平均生产螺钉1200•个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,•应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:已知条件:(1)分配生产螺钉和生产螺母人数共22名.(2)每人每天平均生产螺钉1200个,或螺母2000个.(3)一个螺钉要配两个螺母.(4)为使每天的产品刚好配套,应使生产的螺母数量与螺钉数量之间有什么样关系?螺母的数量应是螺钉数量的两倍,这正是相等关系.解:设分配x人生产螺钉,则(22-x)人生产螺母,由已知条件(2)得,每天共生产螺钉1200x个,生产螺母2000(22-x)个,由相等关系,列方程2×1200x=2000(22-x)去括号,得2400x=44000-2000x移项,合并,得4400x=44000x=10所以生产螺母的人数为22-x=12答:应分配10名工人生产螺钉,12名工人生产螺母.本题的关键是要使每天生产的螺钉、螺母配套,弄清螺钉与螺母之间的数量关系.三、巩固练习课本第99页第7题.解法1:本题求两个问题,若设无风时飞机的航速为x千米/时,那么与例1类似,可得顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据顺风飞行路程=逆风飞行路程,列方程:2(x+24)=3(x-24)去括号,得"www./" EMBED Equation.DSMT4 x+68=3x-72 移项,合并,得-x=-140系数化为1,得x=840两城之间的航程为3(x-24)=2448答:无风时飞机的航速为840千米/时,两城间的航程为2448千米.解法2:如果设两城之间的航程为x千米,你会列方程吗?这时相等关系是什么?分析:由两城间的航程x千米和顺风飞行需2小时,逆风飞行需要3小时,可得顺风飞行的速度为千米/时,逆风飞行的速度为千米/时.在这个问题( http: / / zk. / " \o "欢迎登陆全品中考网)中,飞机在无风时的速度是不变的,即飞机在顺风飞行和逆风飞行中,无风时的速度相等,根据这个相等关系,列方程:-24=+24化简,得x-24=+24移项,合并,得"www./" EMBED Equation.DSMT4 x=48系数化为1,得x=2448即两城之间航程为2448千米.无风时飞机的速度为=840(千米/时)比较两种方法,第一种方法容易列方程,所以正确设元也很关键.四、课堂小结通过以上问题( http: / / zk. / " \o "欢迎登陆全品中考网)的讨论,我们进一步体会到列方程解决实际问题( http: / / zk. / " \o "欢迎登陆全品中考网)的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理,•虽然不必写出检验过程,但这一步绝不是可有可无的.五、作业布置1.课本第99页习题( http: / / zk. / " \o "欢迎登陆全品中考网)3.3第6题( http: / / zk. / " \o "欢迎登陆全品中考网).2.选用课时作业设计.第二课时作业设计一、填空题( http: / / zk. / " \o "欢迎登陆全品中考网).1.行程问题( http: / / zk. / " \o "欢迎登陆全品中考网)有三个基本量分别是______,_______,_______,•它们之间的关系有_________,________,_________.2.A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走65千米.(1)两车同时开出,相向而行,x小时相遇,则列方程为________.(2)两车同时开出,•相背而行,•x•小时之后,•两车相距620•千米,•则列方程为__.(3)慢车先开出1小时,相背而行,慢车开出x小时后,两车相距620千米,则列方程为________.二、解答题( http: / / zk. / " \o "欢迎登陆全品中考网).3.一架飞机在两城市之间飞行,无风时飞机每小时飞行552千米,•在一次往返飞行中,飞机顺风飞行用去5小时,逆风飞行用了6小时,求这次飞行时的风速?4.2001年对甲、乙两所学校学生的身体素质进行测评,•结果两校学生达标人数共1500人,2002年甲校达标人数增加10%,乙校学生达标人数增加15%,•两校达标总人数比2001年增加12%,问2001年两校学生达标人数各多少?答案:一、1.略2.(1)60x+65x=480 (2)65x+60x+480=620 (3)60x+65(x-1)=620-480二、3.24千米/时,设这次飞行风速为x千米/时,5(552+x)=6(552-x)4.900人,600人,设甲校2001年学生达标x人,(1500-x)·15%+10%x=12%×1500.第3课时教学内容课本第95页至97页.教学目标1.知识与技能使学生掌握去分母解方程的方法,总结解方程的步骤.2.过程与方法经历去分母解方程的过程,体会把“复杂”转化为“简单”,把“新”转化为“旧”的转化的思想方法.3.情感态度与价值观培养学生自觉反思、检验方程的解是否正确的良好习惯.重、难点与关键1.重点:掌握去分母解方程的方法.2.难点:求各分母的最小公倍数,以及去分母时,有时要添括号.3.关键:正确利用等式性质,把方程去分母.教具准备投影仪.教学过程一、复习提问1.去括号时应该注意什么?2.等式的性质2是怎样叙述的?3.求12,4,9的最小公倍数.二、新授下面我们来讨论英国伦敦博物馆保存的一部极其珍贵的文物──纸莎草文书中的一个有关数学的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,你知道这个数是多少?用现在的数学符号表示,这道题就是方程:x+x+x+x=33当时的埃及人如果把问题写成这种形式,它一定是“最早”的方程.上面这个方程中有些系数是分数,如果能化去分母,把系数化成整数,则可使解方程中的计算更方便些.只要将方程两边同乘以42,就可化去方程中的分母.42×x+42×x+42×x+42x=42×33即28+21x+6x+42x=1386系数化为1,得x=为更全面地讨论问题,再以方程-2=为例,•看看解有分数系数的一元一次方程的步骤.我们知道,等式两边乘同一个数,结果仍相等,由此能否去掉这个方程的所有分母呢?要乘的这个数是多少比较合适呢?这个数就是方程中各分母的最小公倍数10,方程两边同乘以10.于是方程左边变为:10×(-2)=10×-10×2=5(3x+1)-10×2去了分母,方程右边变为什么?你算一算.下面的框图表示了解这个方程的具体过程.(见课本第100页)解:去分母,得5(3x+1)-10×2=(3x-2)-2(2x+3)去括号,得15x+5-20=3x-2-4x-6移项,得15x-3x+4x=-2-6-5+20合并,得16x=7系数化为1,得x=思路点拨:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏;(2)用分母的最小公倍数去乘方程的两边时,•不要漏掉等号两边不含分母的项,如上面方程中的“2”.(3)去掉分母以后,分数线也同时去掉,分子上的多项式用括号括起来.回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母──去括号──移项──合并──系数化为1等步骤,•就可以使一元一次方程逐步向着x=a的形式转化.这个过程主要依据等式的性质和运算律等.三、巩固练习课本第98页练习.(3)去分母,得3(5x-1)=6(3x+1)-4(2-x);去括号,得15x-3=18x+6-8+4x,移项,合并,得-7x=1,x=-.(4)去分母,得10(3x+2)-20=5(2x-1)-4(2x+1)去括号,得30x+20-20=10x-5-8-8x-4;移项,合并,得28x=-9,x=-.四、课堂小结1.解方程的思路:解一元一次方程实际上就是将一个方程利用等式性质和运算律进行一系列的变形,最终化为x=a,一般地,先去分母,然后移项、合并,最后系数化为1,当然这些步骤并不是一成不变的,要灵活运用这些步骤.2.去分母就是根据等式性质2,在方程两边都乘以分母的最小公倍数,常犯错误是漏乘不含有分母的项,再一个容易错误的地方是对分数线的理解不全面,分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.五、作业布置1.课本第98页习题3.3第3、9题.2.选用课时作业设计.第三课时作业设计一、下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?1.=-1解:去分母,得2x-1=x+2-1移项,合并,得x=22.解:去分母,得2x-1-x+2=12-x移项,合并,得2x=11系数化为1,得x=二、解方程.答案:一、1.错,改正略.2.错,改正略.二、3.(1)y= "www./" EMBED Equation.DSMT4 (2)x=-7 (3)x=-2 (4)x=-2.感谢您下载使用【班海】教学资源。
3.3解一元一次方程(2)去分母教学目标:1、会运用等式性质2正确去分母解一元一次方程。
2、会运用方程解决实际问题。
教学重点 :去分母解方程。
教学难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
教学过程:一、创设情境,导入新课通过创设问题情境,列方程解决该问题,发展学生用方程解决问题的能力,感受方程是刻画客观世界量与量之间关系的主要模型之一,激发学生的学习热情,关注对学生数学文化素养的培养.教师投影展示,然后出示教材的问题2.你认为本题用算术方法解方便,还是用方程方法解方便? 分析:如果设这个数为x ,你能列出方程吗? 学生思考后回答:23x +12x +17x +x =33. 二、新知讲解探索1 解含分数的一元一次方程 师:你能解上述方程吗?学生可以先尝试解决,一般学生会先将左边合并,然后解决问题,可以让学生试一试这个过程,以便与后边的方法相比较.教师提出另外的解决方案,先左右两边乘42,再解方程试一试. 比较两种方法的优劣. 学生讨论交流后归纳.可以发现两边乘42以后,去掉了分母,使计算过程得到简化. 思考:为什么要乘42呢?学生思考讨论,师生共同归纳: 两边同时乘各分母的最小公倍数. 例 类比上述步骤解方程53x 2-102-x 32-213+=+x 解:(1)两边都乘以 ,去分母,得 依据去括号,得 依据 移项,得 依据 合并同类项,得 依据系数化为1,得 依据(2)学生上述格式自己写出解答过程。
(老师点拔:去分母时不要漏乘每一项,去分母后分子是多项式的要用括号括起来。
)通过上述解答,你知道解一元一次方程有哪些基本程序吗? ●归纳 解一元一次方程的一般步骤:解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项,系数化为1.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等. 巩固练习 解方程:(1)222412x x (2)31-2-121-3x x x =+解:(1)两边都乘以 ,去分母,得去括号,得 移项, 得合并同类项,得 系数化为1, 得(2)两边都乘以 ,去分母,得去括号,得 移项, 得合并同类项,得 系数化为1, 得※注意:1.去分母时,应在方程的左右两边乘分母的最小公倍数.2.去分母的依据是等式的性质二,去分母时不能漏乘没有分母的项.3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.探索2 解分母中含小数的一元一次方程 解方程5.02x-1.5-6.05.1=x 当分母中含有小数时怎么办呢?当方程的分母出现小数时,一般利用分数的基本性质,先将小数化为整数,然后再去分母。
去括号与去分母(2)(教师用)一、教学目标(一)知识与技能:1.会根据方程的特点,正确而熟练地去分母;2.能较熟练地通过去分母解一元-次方程;3.归纳、掌握解一元一次方程的一般步骤.(二)过程与方法:在解决实际问题的过程中理清基本的数量关系,并能列出方程,感受方程对解诀实际问题的作用.(三)情感态度与价值观:渗透方程,思想,培养学生的方程意识;体会数学的化归思想:把复杂变简单,将未知变已知的作用,体会数学的应用价值. 二、教学重点、难点重点:熟练掌握去分母解一元一次方程,归纳解一元- -次方程的一般步骤. 难点:会根据方程的特点正确的去分母. 三、教学过程 纸草书英国伦敦博物馆保存着一部极其珍贵的文物---纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题,下面的问题2就是书中一道著名的求未知数的问题.问题2 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33. 解:设这个数是x ,根据题意得33712132=+++x x x x 我们知道,等式两边乘同一个数,结果仍相等. 这个方程中各分母的最小公倍数是42,方程两边乘42,得 334242714221423242⨯=+⨯+⨯+⨯x x x x即 28x +21x +6x +42x =1386 合并同类项,得 97x =1386 化系数为1,得 971386=x 答:这个数为971386. 去分母53210232213+--=-+x x x 这个方程中各分母的最小公倍数是10,方程两边乘10,于是方程左边变为210)13(521021*********⨯-+=⨯-+⨯=⎪⎭⎫⎝⎛-+⨯x x x 方程右边变为什么?你具体算算.53210232213+--=-+x x x 去分母(方程两边乘各分母的最小公倍数) 5(3x +1)-10×2=(3x -2)-2(2x +3) 去括号 15x +5-20=3x -2-4x -6 移项 15x -3x +4x =-2-6-5+20 合并同类项 16x =7系数化为1167=x 方程两边的每一项都要乘10. 归纳解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等. 例3 解下列方程: (1) 422121x x -+=-+ (2) 3123213-+=-+x x x (3)32213415x x x --+=- (4) 5124121223+--=-+x x x 解:(1)去分母(方程两边乘4),得 2(x +1)-4=8+(2-x ) 去括号,得 2x +2-4=8+2-x 移项,得 2x +x =8+2-2+4 合并同类项,得 3x =12 系数化为1,得 x =4(2)去分母(方程两边乘6),得18x +3(x -1)=18-2(2x -1) 去括号,得 18x +3x -3=18-4x +2 移项,得 18x +3x +4x =18+2+3 合并同类项,得 25x =23系数化为1,得 2523=x 问题 一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车比卡车早1h 经过B 地. A ,B 两地间的路程是多少?如果设A ,B 两地相距x km ,我们根据路程、速度和时间三者的关系,列得方程 17060=-x x 去分母(方程两边乘420),得 7x -6x =420 合并同类项,得 x =420 于是得出两地间的路程为420km . 练习解下列方程:(1))2(1002110019-=x x (2) 4221x x =-+解:(1)去分母(方程两边乘100),得 19x =21(x -2) 去括号,得 19x =21x -42 移项,得 19x -21x =-42 合并同类项,得 -2x =-42 系数化为1,得 x =21(2)去分母(方程两边乘4),得 2(x +1)-8=x 去括号,得 2x +2-8=x 移项,得 2x -x =-2+8 合并同类项,得 x =6(3)去分母(方程两边乘12),得3(5x -1)=6(3x +1)-4(2-x ) 去括号,得 15x -3=18x +6-8+4x 移项,得 15x -18x -4x =6-8+3 合并同类项,得 -7x =1系数化为1,得 71-=x(4)去分母(方程两边乘20),得10(3x +2)-20=5(2x -1)-4(2x +1) 去括号,得 30x +20-20=10x -5-8x -4 移项,得 30x -10x +8x =-5-4-20+20 合并同类项,得 28x =-9 系数化为1,得 289-=x 课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便. 在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.去括号与去分母(2)(学生用)一、教学目标(一)知识与技能:1.会根据方程的特点,正确而熟练地去分母;2.能较熟练地通过去分母解一元-次方程;3.归纳、掌握解一元一次方程的一般步骤.(二)过程与方法:在解决实际问题的过程中理清基本的数量关系,并能列出方程,感受方程对解诀实际问题的作用.(三)情感态度与价值观:渗透方程,思想,培养学生的方程意识;体会数学的化归思想:把复杂变简单,将未知变已知的作用,体会数学的应用价值. 二、教学重点、难点重点:熟练掌握去分母解一元一次方程,归纳解一元- -次方程的一般步骤. 难点:会根据方程的特点正确的去分母. 三、教学过程 纸草书英国伦敦博物馆保存着一部极其珍贵的文物---纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题,下面的问题2就是书中一道著名的求未知数的问题. 问题2 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.去分母53210232213+--=-+x x x 这个方程中各分母的最小公倍数是10,方程两边乘10,于是方程左边变为210)13(521021*********⨯-+=⨯-+⨯=⎪⎭⎫⎝⎛-+⨯x x x 方程右边变为什么?你具体算算. 归纳解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等. 例3 解下列方程: (1) 422121x x -+=-+ (2) 3123213-+=-+x x x (3)32213415x x x --+=- (4) 5124121223+--=-+x x x问题 一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车比卡车早1h 经过B 地. A ,B 两地间的路程是多少? 练习解下列方程: (1))2(1002110019-=x x (2) 4221x x =-+课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便. 在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.。