平面及其表示法1
- 格式:pdf
- 大小:320.95 KB
- 文档页数:9
§7.5平面及其方程一、平面的点法式方程法线向量:如果一非零向量垂直于一平面 .这向量就叫做该平面的法线向量.容易知道 '平面上的任一向量均与该平面的法线向量垂直.唯一确定平面的条件 :当平面口上一点M o (X 0 J0 Z0)和它的一个法线向量 n^A^B *C)为已知时、平面n 的位置就完全确定了 .平面方程的建立:设M(x.y.z)是平面□上的任一点.那么向量M ^M 必与平面n 的法线向量n 垂直、即它们的数量积等于零 :由于Tn 球A*BC)* M 0M =(x —X 0, y —y 。
, Z —Z 0).所以A(XF 0)+B(y-y 0)弋(z-Z 0)=0 .n 上任一点M 的坐标 心工所满足的方程.、如果M (x 、y .Z)不在平面r 上、那么向量M^M 与法线向量n 不垂直、从而…即不在平面□上的点M 的坐标X y .Z 不满足此方程. 由此可知、方程A(x-X 0)+B(y-y 0)P(z-Z 0)n 就是平面□的方程.而平面口就是平面方程的图 形.由于方程A (X%)怕(y-y 0)4c (z-Z 0)=0是由平面L [上的一点M 0(X 0、y 0、Z 0)及它的一个法线向量 n=(AB 、C)确定的、所以此方程叫做平面的点法式方程.例1求过点(2Q)且以 ^(K-2. 3)为法线向量的平面的方程.解根据平面的点法式方程 '得所求平面的方程为(x-2)-2(yt3)t3z=0 * x-2y+3z£n .M 1(2 H ⑷、M 2(—1 \3 L 2)和M 3(0 ,2①的平面的方程.T因为 M 1M 2 =(—3,4, -6)、M 1M 3=(-2,3, —1)、 所以T T in= M 1M^M 1M^ -3-2这就是平面 反过来T n M 0M =0即例2求过三点 解我们可以用 T TM i M 2X M 1M 3作为平面的法线向量k-6 =14 + 9j-k . -1根据平面的点法式方程、得所求平面的方程为14(x-2)H(y+1)-(z -4H0 . 14x49y_ z_15』. 二、平面的一般方程由于平面的点法式方程是 x.y 的一次方程.而任一平面都可以用它上面的一点及它的法线 向量来确定 '所以任一平面都可以用三元一次方程来表示.反过来、设有三元一次方程Ax +By 4Cz 4D =0.我们任取满足该方程的一组数 x o .y o .z ^即Ax o +By o 4Cz o +D =0 .把上述两等式相减 '得A(x£o )+B(y-y o )兀(z-z o )=O 、这正是通过点 M o (x o.y oQ )且以nNA 、BQ 为法线向量的平面方程 .由于方程Ax +By 4Cz *DO与方程A(x 必)+B(y-y o )七(Z-z o ) =o同解*所以任一三元一次方程Ax 也y P z +O n 的图形总是一个平面.方程Ax 4By M z +D =o 称为平面的一般方程,其中 心z 的系数就是该平面的一个法线向量n 的坐标‘即nNA'B .0).例如 '方程3x -4y +z -9=0表示一个平面 小=(3\*訂)是这平面的一个法线向量 .讨论:考察下列特殊的平面方程 .指出法线向量与坐标面、 坐标轴的关系 '平面通过的特殊点或线.Ax +By f z ^o ;By 七Z 也 n^Ax ^z P^o r Ax +By +D P ; Cz +D P 'Ax PO By +D P . 提示: 平面过原点.n =(o *B Q).法线向量垂直于 n =(A 、o rC).法线向量垂直于 n =(A *B *o ).法线向量垂直于 n=(o *o *C)、法线向量垂直于 n=(A .o ,o b 法线向量垂直于 n=(o 占,o b 法线向量垂直于例3求通过x 轴和点(4L 1)的平面的方程.解 平面通过x 轴、一方面表明它的法线向量垂直于 点、即DP .因此可设这平面的方程为By 弋z^o .x 轴*平面平行于 y 轴、平面平行于 z 轴、平面平行于x 轴和y 轴,平面平行于 y 轴和z 轴r 平面平行于 x 轴和z 轴r 平面平行于 xOy 平面.yOz 平面. zOx 平面.X 轴、即AR ;另一方面表明 它必通过原又因为这平面通过点(4 *-3 *7) *所以有—BB-Cn 、或 C 」B .将其代入所设方程并除以B (B 如)、便得所求的平面方程为y ;z=0.例4设一平面与X 、y 、z 轴的交点依次为 P (a *0 * 0)、Q (0、b *0)、R (0 , 0、c )三点、求这平面的 方程(其中乂&?€).解 j a ^D =0, f bB +D =0, pc +D=0,A=-D 、B=-D r C=—D a b c 将其代入所设方程、得 -Dx-Dy-Dz+D =0 、 a b c X +上也=1 . a b c '上述方程叫做平面的截距式方程 *而a 、b 、c 依次叫做平面在 X 、y 、z 轴上的截距.三、两平面的夹角两平面的夹角:两平面的法线向量的夹角(通常指锐角)称为两平面的夹角.设平面n 1和rb 的法线向量分别为 n 1N A 1占1 C )和n 2=(A 2旧2、C 2)、那么平面n 1和rb 的夹角e 、―AAA_A应是(n 1, n 2)和(Til , n 2)F —g ,改)两者中的锐角、因此、cos 日^cosg ,匹)!.按两向量夹角余弦的坐标表示式.平面n 1和rt 的夹角e 可由来确定.从两向量垂直、平行的充分必要条件立即推得下列结论平面口 1和巧垂直相当于A1A2怕辰 QC2=0; 平面□ 1和n 2平行或重合相当于 A =BL -C!.A , B, C 2例5求两平面 x-yPz-6=0和2x 为七-5=0的夹角. 解 n 1=(A 1 启1 Q1)=(1、一1 *2)、n 2m A 2、B 2Q2)=(2*1 * 1).c 1c2l_ I1'2■ (-1)'T ■ 2…I| Jcos g _lAie 日口2 "T A 2+ Bfg 2叔2 +B :七:"712+(-1)2七2722+12+12~^设所求平面的方程为Ax+By4Cz*HD=0.P (a *0 *0)、Q (0 *b *0)、R (0 ,0 ,c )都在这平面上*所以点P 、Q 、R 的坐标都满足所设方程*即 因为点 有由此得IAA2+B 1B 2+C 1C 2IAco眄cosg,讣府魯Y A 呢W|1X2 +(-1)X1 +2咒1||AA 2+B ,B 2pi C 2|所以*所求夹角为,4,例6 一平面通过两点 M 1(1」和M 2(o 」#)且垂直于平面 x+y+z=o 、求它的方程.解 方法一:已知从点M 1到点M 2的向量为 山勻/卫、-?)、平面x+y+z=o 的法线向量为n 2=(1、 1 J). 设所求平面的法线向量为n^A 、B 、C).因为点M 1(1、1、1)和M 2(o1)在所求平面上、所以n 丄n 仁即从—2C=o 、A 亠2C . 又因为所求平面垂直于平面 x^^zT*所以n 丄m*即A+B4C=o*B=C. 于是由点法式方程*所求平面为-2CZ)£(y —1)兀(Z —1)0 即 2x —y-z=o.方法二:从点M 1到点M 2的向量为n 1 =(-1 e *-2) *平面x+y+z=o 的法线向量为“2=(1* 1 , 1). 设所求平面的法线向量因为所以所求平面方程为2(x-1)-(y-1)-(z-1)0 2x-y-z=0 .例7设P o (x o ,y o ,z o )是平面Ax+By 兀z 也=0外一点、求P o 到这平面的距离. 解 设e n 是平面上的单位法线向量.在平面上任取一点 P 1(X 1 $1 *Z 1)*则P o 到这平面的距离为|A(X o^i )+B(y o-y i )七(z o^i )|扌是示:en^7A ^B ^(A, B, C)' 活o =(xo —x 1,yo —y 1,zo —z1)、例8求点(2 J J )到平面x +y -z +1 =0的距离.解 d JAxp^y o 弋zo^DI 」仝2丁X 1—(—1門+1| _ 3 —E _J A 2 + B 2 弋2 j 12+12+(—1)273 ' n 可取为npc n2 .i:-J o 1J A 2 +B 2+C 2JAx o 怕y oy z o-(Ax1HBy 1 七Z 1)| J A 2 +B 2 七2JAx^怕yo +Czo +D|Td 斗RP oen 1 =j 12+12+(_1)2。
三维空间中平面的表达式概述及解释说明1. 引言1.1 概述本篇文章主要探讨三维空间中平面的数学表达式,旨在介绍和解释平面的定义、特征以及不同的表示方法。
通过对平面方程求解方法和应用场景的讨论,我们可以深入理解平面在三维空间中的表达方式以及其在实际问题中的应用价值。
1.2 文章结构本文共分为五个主要部分,包括引言、平面的定义和特征、平面的表示方法和模型、平面的方程求解方法和应用场景以及结论。
下面将分别对每个部分进行详细说明。
1.3 目的本文旨在全面介绍三维空间中平面的表达式,并通过具体案例分析展示平面方程求解方法在实际问题中的实用性。
希望通过这篇文章能够帮助读者对平面方程有更深入的了解,并且能够将其应用到相关领域中,从而提升问题求解能力和应用技巧。
以上是“1. 引言”部分内容,请检查核对。
2. 平面的定义和特征2.1 三维空间中平面的概念在三维几何中,平面是由无限多个点组成的二维图形。
它是一个无厚度、无边界、无限延伸的表面。
平面可以通过三个非共线的点或者一条法向量和一个过该点的向量来确定。
在数学上,我们可以将平面定义为满足以下条件之一的集合:- 任意两点都可以直线连接;- 任意一条直线上任意一点与该集合中另外两个不重合的点所确定的直线也属于该集合。
2.2 平面的数学表达式平面通常可以使用方程来表示。
在三维空间中,最常用的平面方程形式为Ax + By + Cz + D = 0,其中A、B、C和D是实数系数,并且A、B和C不全为零。
这个方程被称为一般式方程或通用式方程。
通过调整系数A、B和C,可以得到不同形式的平面方程。
例如,当D=0时,我们可以将通用式方程转换为标准式方程,即Ax + By + Cz = 0。
此外,在向量几何中,还可以使用法向量与平面上一点作为参数来表示平面。
设P(x0, y0, z0)为平面上的一点,法向量为n = (A, B, C),则平面上任意一点Q(x, y, z)满足向量PQ·n = 0。
平面及其表示教案中职教案标题:平面及其表示教学目标:1. 了解平面的基本概念和特征。
2. 掌握平面的表示方法,包括平面图和坐标表示法。
3. 能够在平面上进行简单的几何运算,如平移、旋转和镜像。
4. 发展学生的几何思维和空间想象能力。
教学内容:1. 平面的定义和特征:a. 平面的定义:平面是一个没有厚度的二维空间,可以看作是无限多个平行线的集合。
b. 平面的特征:平面上的任意两点可以确定一条直线,平面上的任意三点不共线。
2. 平面的表示方法:a. 平面图表示法:通过绘制平面图来表示平面上的图形和位置关系。
b. 坐标表示法:通过引入坐标系,使用坐标来表示平面上的点和图形。
3. 平面上的几何运算:a. 平移:将平面上的图形按照指定的方向和距离进行移动。
b. 旋转:围绕平面上的某个点或轴进行旋转,可以按照角度和方向确定旋转的方式。
c. 镜像:以平面上的某条直线或点为轴进行镜像,可以按照轴的位置和方向确定镜像的方式。
教学步骤:1. 导入与激发兴趣:通过展示一些平面相关的实际例子,引发学生对平面的兴趣和好奇心。
2. 知识讲解:简要介绍平面的定义和特征,并详细讲解平面的表示方法和几何运算。
3. 实例演示:通过绘制平面图和使用坐标表示法,展示不同图形在平面上的表示方法,并进行平移、旋转和镜像的演示。
4. 练习与巩固:提供一些练习题,让学生运用所学知识进行实践操作,巩固对平面及其表示的理解。
5. 拓展与应用:引导学生思考平面在日常生活和其他学科中的应用,并展示相关实际案例。
6. 总结与归纳:对本节课所学内容进行总结,并强调学生需要掌握的重点和难点。
7. 课后作业:布置一些与平面及其表示相关的作业,以巩固学生的学习成果。
教学资源:1. 平面图纸和绘图工具。
2. 坐标系图纸和坐标纸。
3. 实际生活中的平面示例图片或视频。
4. 平面几何练习题和答案。
评估方式:1. 课堂练习:通过学生的练习题完成情况和答案讲解,检查学生对平面及其表示的掌握程度。