21.2 二次函数的图象和性质(5)
- 格式:pptx
- 大小:452.33 KB
- 文档页数:15
二次函数的图像与性质二次函数(quadratic function)是数学中的一类函数,其表达式为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
这种函数的图像是一条抛物线,其特点是拥有许多有趣的性质和图像的变化规律。
本文将对二次函数的图像与性质进行详细说明。
一、基本形式二次函数的基本形式为y = ax^2,其中a为二次函数的系数,决定了抛物线的开口方向和形状。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二、顶点二次函数的顶点(vertex)是抛物线的最高点(若开口向下)或最低点(若开口向上)。
顶点可通过求导数或利用抛物线的对称性求得。
顶点的横坐标为x = -b/2a,纵坐标为y = f(x),其中f(x)为二次函数的表达式。
三、对称轴二次函数图像的对称轴(axis of symmetry)是通过抛物线的顶点,并且与抛物线相互对称的一条直线。
对称轴的方程可以通过对抛物线的表达式进行简单计算得到。
四、焦点和准线焦点(focus)和准线(directrix)是二次函数图像的两个重要元素。
焦点是指在平面上向外弯曲的抛物线上的一个特定点。
焦点的横纵坐标可通过复杂的求解方法得到,这里不再详述。
准线是通过焦点以及与对称轴垂直的直线上的特定点构成的直线段。
准线的方程也可通过复杂的计算得到。
五、零点二次函数的零点(zeros)是函数表达式等于零的横坐标。
其求取方法可以通过方程ax^2 + bx + c = 0来求解。
根据求根公式,可得有两个根、一个根或者无实根。
六、图像的变化规律通过改变二次函数的参数a、b、c的数值,可以使得二次函数的图像发生各种变化。
以下是几种常见的变化规律:1. 改变a的值,a越大,抛物线越“扁平”,开口越朝上或者朝下。
2. 改变b的值,b为线性项的系数,可以使抛物线左右平移。
3. 改变c的值,c为常数项的系数,可以使抛物线上下平移。
七、应用二次函数的图像与性质在实际生活中有广泛的应用。
二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。
2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。
二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。
2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。
3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。
4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。
三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。
2.求对称轴:对称轴为x=h。
3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。
4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。
四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。
2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。
3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。
五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。
二次函数的图像与性质在我们学习数学的过程中,二次函数是一个非常重要的概念。
它不仅在数学领域有着广泛的应用,在实际生活中,比如物理、经济等方面也经常能看到它的身影。
今天,咱们就来好好聊聊二次函数的图像与性质。
二次函数的一般形式是 y = ax²+ bx + c(其中 a、b、c 是常数,且a ≠ 0)。
当 a > 0 时,函数图像开口向上;当 a < 0 时,函数图像开口向下。
这就好像一个碗,如果开口向上,就能往里装东西;开口向下,东西就容易掉出来。
先来说说二次函数图像的对称轴。
对称轴的方程是 x = b / 2a 。
这条对称轴把二次函数的图像分成了两个对称的部分,就像镜子里的反射一样。
比如说,对于函数 y = x² 2x + 1 ,其中 a = 1 ,b =-2 ,那么对称轴就是 x =(-2) /(2×1) = 1 。
接下来看看顶点。
顶点就是二次函数图像的最高点或者最低点。
当a > 0 时,顶点是图像的最低点;当 a < 0 时,顶点是图像的最高点。
顶点的坐标可以通过把对称轴的 x 值代入函数中求得。
还是以 y = x²2x + 1 为例,对称轴 x = 1 ,把 x = 1 代入函数,得到 y = 1² 2×1 +1 = 0 ,所以顶点坐标就是(1, 0) 。
再说说二次函数的截距。
当 x = 0 时,y = c ,这个 c 就是函数在y 轴上的截距。
比如函数 y = 2x²+ 3x 1 ,这里的 c =-1 ,也就是说函数图像与 y 轴的交点是(0, -1) 。
二次函数的图像还与判别式Δ = b² 4ac 有着密切的关系。
如果Δ> 0 ,函数图像与 x 轴有两个交点;如果Δ = 0 ,函数图像与 x 轴有一个交点;如果Δ < 0 ,函数图像与 x 轴没有交点。
比如说,对于函数 y = x² 2x 3 ,其中 a = 1 ,b =-2 ,c =-3 ,那么Δ =(-2)² 4×1×(-3) = 16 > 0 ,所以函数图像与 x 轴有两个交点。
二次函数的图像与性质二次函数是数学中一种重要的函数形式,其图像形状特殊且具有许多性质。
本文将介绍二次函数的图像特点以及与其相关的性质。
一、二次函数的标准形式二次函数的一般形式为f(x) = ax² + bx + c,其中a、b、c为实数,且a ≠ 0。
为了便于研究,我们可以将二次函数表示为标准形式f(x) =a(x - h)² + k,其中(h, k)为顶点坐标。
二、二次函数的图像特点1. 对称轴:二次函数的对称轴是与顶点坐标垂直的直线。
对称轴方程为x = h,其中h为顶点横坐标。
2. 顶点:二次函数的顶点是图像的最高点或最低点,是二次函数的关键特征。
顶点坐标为(h, k)。
3. 开口方向:二次函数的开口方向由二次项系数a的正负决定。
若a > 0,则开口向上;若a < 0,则开口向下。
4. 正定或负定:二次函数的图像在开口方向上是否有最值,与二次项系数a的符号有关。
若a > 0,则二次函数为正定;若a < 0,则二次函数为负定。
5. 零点:二次函数的零点是函数与x轴的交点,即f(x) = 0的解。
零点个数最多为2个。
三、二次函数的性质1. 零点和因式分解:二次函数的零点可以通过因式分解得到。
对于一般二次函数的标准形式f(x) = ax² + bx + c,我们可以利用求根公式或配方法将其因式分解为f(x) = a(x - x₁)(x - x₂),其中x₁、x₂为零点。
2. 最值:二次函数开口方向上的最值即为顶点,若二次函数开口向上,顶点为最小值;若二次函数开口向下,顶点为最大值。
3. 对称性:二次函数的图像关于对称轴对称,即对于任意x点,若(x, y)在图像上,则(x, -y)也在图像上。
4. 范围:二次函数的范围与二次项系数a的正负相关。
若a > 0,则函数的范围为区间(k, +∞);若a < 0,则函数的范围为区间(-∞, k),其中k为顶点纵坐标。
沪科版数学九年级上册21.2.2《二次函数y=a2+b+c的图象和性质》(第5课时)教学设计一. 教材分析《二次函数y=a2+b+c的图象和性质》是沪教版数学九年级上册第21章第2节的内容。
这部分内容是在学生已经掌握了二次函数的一般形式y=ax^2+bx+c的基础上,进一步探讨二次函数的图象和性质。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。
教材中提供了丰富的例题和练习题,以及一些探究活动,帮助学生逐步深入理解二次函数的图象和性质。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式已经有了一定的了解。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,需要引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
同时,学生对于数学的兴趣和积极性也需要教师的激发和引导。
三. 教学目标1.让学生理解二次函数的图象和性质,能够运用二次函数的性质解决一些实际问题。
2.培养学生的观察能力、分析能力和推理能力。
3.激发学生对数学的兴趣和积极性,培养学生的合作意识和探究精神。
四. 教学重难点1.二次函数的图象和性质的理解和运用。
2.二次函数的图象和性质的推导和证明。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
2.运用多媒体教学手段,展示二次函数的图象和性质的实例,帮助学生直观地理解和掌握。
3.学生进行小组讨论和探究活动,培养学生的合作意识和探究精神。
六. 教学准备1.多媒体教学设备。
2.相关的教学PPT或投影片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象和性质的概念。
2.呈现(10分钟)利用多媒体展示一些二次函数的图象和性质的实例,让学生直观地感受和理解二次函数的图象和性质。
3.操练(10分钟)让学生通过观察和分析,找出二次函数的图象和性质的特点,并进行推理和证明。
21.2二次函数的图象和性质第1课时二次函数y=ax2的图象和性质教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.教学过程一、问题引入1.一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线.)2.画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).3.二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)二、新课教授【例1】画出二次函数y=x2的图象.(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.【例2】在同一直角坐标系中,画出函数y=x2及y=2x2的图象.思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。