第3章 两样本的非参数检验
- 格式:ppt
- 大小:2.26 MB
- 文档页数:79
参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。
参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。
本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。
参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。
然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。
常见的参数检验方法有t检验、F检验和卡方检验等。
以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。
假设我们有两组样本数据,分别服从正态分布。
可以使用t检验来计算两组样本均值的差异是否显著。
t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。
参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。
此外,参数检验通常具有较好的效率和统计性质。
然而,参数检验也有一些限制和缺点。
首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。
另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。
此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。
与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。
它适用于更广泛的数据类型和样本分布。
常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。
以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。
这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。
非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。
此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。
两独立样本t检验和非参数检验的实证分析摘要:教学质量是靠具体课程完成,课程的建设是教学质量提升的重要环节和基本保证。
本文简述了概率论与数理统计重点课程建设的必要性,重点在于对课程建设前后分层随机抽样得来的样本进行实证分析。
实证分析主要从基本统计分析、参数检验、非参数检验三个大的方面进行,尤其是非参数检验方面,又具体利用了三种不同的检验法进行分析推断。
关键词:t检验;非参数检验;显著性水平;频数分析概率论与数理统计是我国高等院校理工类、经济类、管理类各专业的一门重要公共课程,同时也是一门应用广泛,适用性强的工具课。
此门课程的教学为学生的其他专业课及其将来毕业后的工作、继续深造等方面奠定必要的数学,而且对培养学生的逻辑思维能力、分析判断问题能力、统计观点、应用能力和创新能力均有着特殊而又重要的作用,是培养高素质综合型人才的重要保证。
笔者本身是东华理工大学理学院的一线教师,这两年来,同时在江西财经大学统计学院读研究生。
在此期间,笔者主持的“概率论与数理统计”重点课程建设项目小组一直在努力的探索和研究,收获了一些成果。
本文的主要目的是针对进行重点课程建设这几年来,对搜集到的学生该门课程的考试成绩从统计学的角度进行实证分析。
尤其是从参数检验和非参数统计两个重要角度进行探究,论证这几年来进行课程建设是否让学生成绩取得了明显的提高。
一、基本统计分析对数据的分析首先从基本统计分析入手。
通过基本统计分析,掌握数据的基本统计特征,同时迅速把握数据的总体分布形态。
而基本统计分析往往先从频数分析开始,由于成绩数据均为定距型数据,直接采用频数分析不利于对其分布形态的把握,因此先对数据分组后再进行频数分析。
SPSS频数分析的操作如下:选择菜单【Analyze】→【Decriptive】→【Frequencie】,结果如下:从上面的统计表中可以看出,进行重点课程建设后,平均分有了明显的提高,而且从频数分布表可以看出,第3组第4组即中高分数段百分数有了明显提升。
非参数卡方检验1.理论非参数检验是在总体分布未知或知道甚少的情况下,不依赖于总体布形态,在总体分布情况不明时,用来检验不同样本是否来自同一总体的统计方法进。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
非参数检验优势:检验条件宽松,适应性强。
针对,非正态、方差不等的已及分布形态未知的数据均适用。
检验方法灵活,用途广泛。
运用符号检验、符号秩检验解决不能直接进行四则运算的定类和定序数据。
非参数检验的计算相对简单,易于理解。
但非参数检验方法对总体分布假定不多,缺乏针对性,且使用的是等级或符号秩,而不是实际数值,容易失去较多信息。
非参数卡方检验:用于检验样本数据的分布是否与某种特定分布情况相同。
非参数卡方检验通过三步检验:1.卡方统计量:X2=B 其中K 是样本分类的个数,0表示实际观测的频数,B 表示理论分布下的频数。
2.拟合优度检验:A.对总体分布建立假设。
B.抽样并编制频率分布表。
C.以原假设为真,导出期望频率。
D.计算统计量。
E.确定自由度,并查x2表,得到临界值。
F.比较x2值与临界值,做出判断。
3.独立性检验A.对总体分布建立假设。
B.抽样并编制r*c 列联表。
C.计算理论频数。
D.计算检验统计量。
E.确定自由度,并查x2表,得到临界值。
F.比较x2值与临界值,做出判断。
2.非参数卡方检验操作步骤第一步:将需检验的数据导入spss中并进行赋值后,点击分析非参数检验、旧对话框、卡方。
图2操作步骤第一步第二步:进入图中对话框后点击,首先将需检验的数据放入检验变量列表中,后在期望值选项中所以类别相等或者值(值:需要手动输入具体的分布情况)。
如果特殊情况需要调整检验置信区间,点击精确,进入图中下方对话框后点击蒙特卡洛法框里收到填入。
点击继续、确定。
图3操作步骤第二步第三步:如果需要看描述统计结果和四分位数值可以点击选项、勾选描述、四分位数。
点击继续、确实。
图4操作步骤第二步3.非参数卡方检验结果然后非参数卡方检验的描述统计、卡方检验频率表、检验统计结果就出来了。
两个独立样本的4种非参数检验方法两个独立样本的4种非参数检验方法1、两独立样本的Mann-Whitney U检验定义:两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。
Mann-Whitney U检验(Wilcoxon秩和检验)主要通过对平均秩的研究来实现推断。
秩:将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。
相同观察值(即相同秩,ties),取平均秩。
两独立样本的Mann-Whitney U检验的零假设H0:两个样本来自的独立总体均值没有显著差异。
将两组样本(X1 X2 …… X m)(Y1 Y2…… Y n)混合升序排序,每个数据将得到一个对应的秩。
计算两组样本数据的秩和W x,W y 。
N=m+n Wx+Wy=N(N+1)/2如果H0成立,即两组分布位置相同,W x应接近理论秩和m(N+1)/2;W y 应接近理论秩和n(N+1)/2)。
如果相差较大,超出了预定的界值,则可认为H0不成立。
2、两独立样本的K-S检验两独立样本的K-S检验与单样本K-S检验类似。
其零假设H0:样本来自的两独立总体分布没有显著差异。
检验统计量D 为两个样本秩的累积分布频率的最大绝对差值。
当D较小时,两样本差异较小,两样本更有可能取自相同分布的总体;反之,当D较大时,两样本差异变大,两样本更有可能取自不同分布。
3、两独立样本的游程检验(Wald-Wolfwitz Runs)零假设是H0:为样本来自的两独立总体分布没有显著差异。
样本的游程检验中,计算游程的方法与观察值的秩有关。
首先,将两组样本混合并按照升序排列。
在数据排序时,两组样本的每个观察值对应的样本组标志值序列也随之重新排列,然后对标志值序列求游程。
SPSS将自动计算游程数得到Z统计量,并依据正态分布表给出对应的相伴概率值。
非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。
与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。
为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。
此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。
它的原假设是两组样本中位数相同。
首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。
接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。
它的原假设是两组样本中位数相同。
要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。
接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。
最后点击“OK”即可得到检验结果。
3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。
它的原假设是多组样本中位数相同。
要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。
接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。
常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。
第三章 两相关样本的非参数检验 1第三章 两相关样本的非参数检验在实际生活中,常常要比较成对数据。
比如比较两种处理,如药物,饮食,材料,管理方法等等。
有时要同时比较,有时要比较处理前后的区别.例如,某鞋厂比较两种材料的耐磨性,如果让两组不同的人来实验,则因为人们的行为差异很大,所以,不能进行公平的比较,如果让某个样本的左右两只鞋分别用不同的材料作成,实验的条件就很相似了。
所谓两个相关样本,是指两样本之间存在着某种内在联系。
§3.1 符号检验一、基本方法设X 和Y 分别具有分布函数F(x)和f(y),从两个总体得随机配对样本数据),(,),,(),,(2211n n y x y x y x ,研究X 和Y 是否具有相同得分布函数。
即检验::0H )(x F =)(y F 。
如果两个总体具有相同的分布,则其中位数应该相等,所以检验的假设为:与单样本的符号检验一样,也定义S +和S -为检验的统计量。
的数目为i i ni i i y x y x I S >>=∑=+1)(的数目为i i ni i i y x y x I S >>=∑=+1)(由于S +和S -的抽样分布为二项分布)21,(n B ,如果S +大小适中,则支持原假设,否则S +太大,S -太小,则支持y x m m H >:1;S +太小,S-太大,则支持y x m m H <:1。
令=S S k ,则检验的准则如下表:例从实行适时管理(JIT)的企业中,随机抽取20家进行效益分析,它们在实施JIT前后三年的平均资产报酬率。
问在5%的显著性水平下,企业在实施JIT前后的资产报酬率是否有显著差异?第三章 两相关样本的非参数检验 3应该接受原假设,即企业在实施JIT 前后的资产报酬率没有显著差异?§3.2 两样本配对Wilcoxon 检验前面的符号检验只用到它们差异的符号,而对数字大小所包含的信息未能考虑。
非参数统计实验报告一、实验目的及要求学习两独立样本数据位置检验方法,包括Brown-Mood 检验,Man-Whitney 秩和检验,以及有打结情况的处理;尺度检验的方法,包括Mood 检验,Moses 检验。
掌握不同方法的适用条件(如Mood 检验假设两样本均值相等),检验原理,并能够运用R 软件进行操作求解。
二、环境R 软件三、原理(一)Brown —Mood 检验将Y X 、两样本混合,求混合数据的中位数xy M ,记录样本X 中大于xy M 的个数A ,A 的分布服从超几何分布,A 太小或太大时考虑拒绝原假设。
(只有方向的信息,没有差异大小的信息)(二)Man-Whitney 秩和检验假设,来自于样本来自于样本)(,...,,Y ),(...,,2121b n a m y F Y Y x F X X X μμ--相互独立。
与并且n m Y Y Y X X X ,...,,,...,,2121把两样本混合,求混合数据的秩R ,计算样本1821...,,X X X 的秩和X W ,样本1821,...,,Y Y Y 的秩和Y W ,并进行比较.其中2)1(,2)1(++=++=n n W W m m W W XY Y YX X ,),,(#i m n j YX I j I i X Y W ∈∈<=,表示混合数据中样本1821,...,,Y Y Y 小于样本1821...,,X X X 的个数。
如果X W 过大或者过小,那么数据将支持y H μμ>x 1:或者y H μμ<x 1:,将不能证明两样本形成的序列是一个随机的混合,将拒绝X 、Y 来自相同总体的零假设。
(充分利用差异大小的信息)(三)Mood 检验前提假定Y X 、两样本具有相同的均值,将Y X 、两样本混合,求混合数据中样本X 的秩i R ,构造统计量∑=++-=mi i n m R M 12)21(,M 偏大,则样本X 的方差可能偏大,可以对大的M 拒绝零假设。