两配对样本非参数检验
- 格式:pdf
- 大小:4.08 MB
- 文档页数:25
两组非参数检验方法非参数统计方法是指对总体分布形式不作任何假设的一类统计检验方法。
相对于参数统计方法而言,非参数统计方法在总体参数未知或者总体分布不满足特定假设条件的情况下更能适用。
本文将介绍两组常用的非参数检验方法:符号检验和Wilcoxon秩和检验。
第一组非参数检验方法是符号检验。
符号检验是对两个独立样本进行的一种非参数假设检验方法。
它的基本原理是比较两个样本中大于(或小于)某个特定值的样本数量是否具有显著差异。
首先,我们需要定义一个零假设(H0)和一个备择假设(H1)。
然后,计算两个样本对应数据的差值。
对于差值为正的样本,给予“+”符号;对于差值为负的样本,给予“-”符号;对于差值为零的样本,可以省略不计。
最后,通过比较“+”和“-”符号的数量,使用二项分布来计算出p值。
第二组非参数检验方法是Wilcoxon秩和检验。
这是一种用于比较两个相关样本的非参数假设检验方法。
它的思想是先将两个样本进行相互配对,然后对两个样本的差异值按大小进行排列,并赋予秩次。
然后,计算出正向差异和负向差异的秩和,并取较小值作为检验统计量。
最后,根据理论分布进行显著性检验,得到p值。
这两组非参数检验方法都有自己的适用范围和优势。
符号检验适用于样本容量较小、样本分布不满足正态分布假设的情况下,对两个独立样本差异进行显著性检验。
Wilcoxon秩和检验适用于比较两个相关样本之间的差异,如前后两次测量、配对样本的差异等。
与参数检验方法相比,这两个非参数方法更加鲁棒,能够在总体分布未知或偏离正态分布的情况下给出可靠的结果。
总结起来,非参数检验方法是一类不依赖与总体参数分布假设的统计方法,常用于小样本或总体分布不明确的情况下。
符号检验和Wilcoxon秩和检验是其中两组常用的方法。
符号检验适用于比较两个独立样本的差异,通过比较“+”和“-”符号的数量来判断差异的显著性;Wilcoxon秩和检验适用于比较两个相关样本的差异,通过对差异值按大小排列,并计算秩和来判断差异的显著性。
两配对样本非参数检验在统计学中,非参数检验是一种用于比较两个或多个独立样本之间差异的方法,它不依赖于数据的分布假设。
相比之下,参数检验需要对数据的分布做出假设,例如正态分布。
非参数检验的优点是更加灵活,在不确定数据的分布情况下更能有效地进行统计推断。
以下将介绍两种常见的非参数检验方法:Wilcoxon秩和检验和Mann-Whitney U检验。
Wilcoxon秩和检验又称为Wilcoxon符号秩检验、Wilcoxon配对差异检验等,它用于比较两个配对样本的差异。
该检验的原假设是,在两个配对样本中,两两配对的差异具有相同的分布。
而备择假设是两个配对样本之间存在差异。
Wilcoxon秩和检验的步骤如下:1.给出两个配对样本,分别记作X和Y。
2.对所有配对差异进行排序,并为每个差异分配一个秩次,然后计算秩和W+和W-。
3.根据秩和W+和W-的大小,查找对应的临界值。
4.比较秩和W+和W-与临界值,如果大于等于临界值,则拒绝原假设,否则接受原假设。
Mann-Whitney U检验用于比较两个独立样本的差异,它的原假设是两个样本来自同一个总体,而备择假设是两个样本来自不同的总体。
Mann-Whitney U检验的步骤如下:1.给出两个独立样本,分别记作X和Y。
2.对两个样本的所有观测值进行排列,并为每个观测值计算秩次。
3.根据秩次,计算U值。
4.利用U值和样本量的关系,查找对应的临界值。
5.比较U值与临界值,如果小于等于临界值,则拒绝原假设,否则接受原假设。
需要注意的是,在使用非参数检验时,样本量越大,结果的准确性越高。
此外,当样本量较小时,非参数检验的效果可能会受到影响,建议使用参数检验。
综上所述,非参数检验是一种灵活、无需分布假设的统计推断方法,其中Wilcoxon秩和检验和Mann-Whitney U检验用于比较两个独立样本或配对样本之间的差异。
它们的应用范围广泛,并在实际问题中得到广泛应用。
抽样检验方案的类型有哪些抽样检验方案的类型有哪些摘要:抽样检验是统计学中常用的一种方法,用于判断一个总体是否具有某种特征。
在实际应用中,根据研究目的和数据特点的不同,可以选择不同类型的抽样检验方案。
本文将介绍六种常见的抽样检验方案类型:单样本检验、双样本检验、配对样本检验、方差分析、相关分析和非参数检验,并对每种类型的方案进行详细的叙述和讨论。
关键词:抽样检验,类型,单样本检验,双样本检验,配对样本检验,方差分析,相关分析,非参数检验一、单样本检验单样本检验是指在抽样过程中,只有一个样本参与检验的方法。
它适用于总体参数已知的情况下,通过对样本数据进行统计推断,判断总体是否满足某种特征。
常用的单样本检验方法包括:单样本均值检验、单样本比例检验和单样本方差检验。
单样本检验的步骤包括:建立假设、选择显著性水平、计算统计量和判断决策。
二、双样本检验双样本检验是指在抽样过程中,同时有两个样本参与检验的方法。
它适用于对比两个总体是否相同或不同的情况。
双样本检验常用的方法包括:独立样本 t 检验、配对样本 t 检验和 Mann-Whitney U 检验。
独立样本 t 检验适用于两个独立样本的均值比较,配对样本 t 检验适用于两个相关样本的均值比较,Mann-Whitney U 检验适用于两个独立样本的中位数比较。
三、配对样本检验配对样本检验是指在抽样过程中,每个样本中的观测值之间存在相关关系的方法。
它适用于在相同样本上进行两次观测,比较观测值前后的差异是否显著。
常用的配对样本检验方法包括:配对样本 t 检验和符号检验。
配对样本 t 检验适用于样本差异服从正态分布的情况,符号检验适用于样本差异不服从正态分布的情况。
四、方差分析方差分析是一种用于比较两个以上样本均值是否存在显著差异的方法。
它适用于多个不同总体均值之间的比较。
方差分析常用的方法包括:单因素方差分析和多因素方差分析。
单因素方差分析用于比较一个因素下不同水平之间的均值差异,多因素方差分析用于比较多个因素的交互作用对均值的影响。
一、概述非参数检验对于总体分布没有要求,因而使用范围更广泛。
对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
二、问题为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。
请问该放松方法对入睡时间有无影响。
本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。
三、统计操作数据视图菜单选择打开如下的对话框该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。
点击进入“字段”选项卡。
将“放松前”、“放松后”均选入右边“检验字段”框中。
点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon匹配样本对符号秩(二样本)”复选框。
“检验选项”可以设定显著性水平。
点击“运行”按钮,输出结果四、结果解读这就是输出结果。
原假设示放松前好放松后差值的中位数等于0,P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。
双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。
如下图。
统计第十一课:SPSS 多相关样本的非参数检验(Friedman检验)关键词:SPSS多相关样本非参数检验2015-07-14 00:00来源:互联网点击次数:5103先讲讲什么是 Friedman 检验Friedman 检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法。
其原假设是:多个配对样本来自的多个总体分布无显著差异。
SPSS 将自动计算 Friedman 统计量和对应的概率 P 值。
如果概率 P 值小于给定的显著性水平 0.05,则拒绝原假设,认为各组样本的秩存在显著差异,多个配对样本来自的多个总体的分布有显著差异。
反之,则不能拒绝原假设,可以认为各组样本的秩不存在显著性差异。