两样本的非参数检验
- 格式:ppt
- 大小:2.21 MB
- 文档页数:80
两独立样本t检验和非参数检验的实证分析摘要:教学质量是靠具体课程完成,课程的建设是教学质量提升的重要环节和基本保证。
本文简述了概率论与数理统计重点课程建设的必要性,重点在于对课程建设前后分层随机抽样得来的样本进行实证分析。
实证分析主要从基本统计分析、参数检验、非参数检验三个大的方面进行,尤其是非参数检验方面,又具体利用了三种不同的检验法进行分析推断。
关键词:t检验;非参数检验;显著性水平;频数分析概率论与数理统计是我国高等院校理工类、经济类、管理类各专业的一门重要公共课程,同时也是一门应用广泛,适用性强的工具课。
此门课程的教学为学生的其他专业课及其将来毕业后的工作、继续深造等方面奠定必要的数学,而且对培养学生的逻辑思维能力、分析判断问题能力、统计观点、应用能力和创新能力均有着特殊而又重要的作用,是培养高素质综合型人才的重要保证。
笔者本身是东华理工大学理学院的一线教师,这两年来,同时在江西财经大学统计学院读研究生。
在此期间,笔者主持的“概率论与数理统计”重点课程建设项目小组一直在努力的探索和研究,收获了一些成果。
本文的主要目的是针对进行重点课程建设这几年来,对搜集到的学生该门课程的考试成绩从统计学的角度进行实证分析。
尤其是从参数检验和非参数统计两个重要角度进行探究,论证这几年来进行课程建设是否让学生成绩取得了明显的提高。
一、基本统计分析对数据的分析首先从基本统计分析入手。
通过基本统计分析,掌握数据的基本统计特征,同时迅速把握数据的总体分布形态。
而基本统计分析往往先从频数分析开始,由于成绩数据均为定距型数据,直接采用频数分析不利于对其分布形态的把握,因此先对数据分组后再进行频数分析。
SPSS频数分析的操作如下:选择菜单【Analyze】→【Decriptive】→【Frequencie】,结果如下:从上面的统计表中可以看出,进行重点课程建设后,平均分有了明显的提高,而且从频数分布表可以看出,第3组第4组即中高分数段百分数有了明显提升。
非参数卡方检验1.理论非参数检验是在总体分布未知或知道甚少的情况下,不依赖于总体布形态,在总体分布情况不明时,用来检验不同样本是否来自同一总体的统计方法进。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
非参数检验优势:检验条件宽松,适应性强。
针对,非正态、方差不等的已及分布形态未知的数据均适用。
检验方法灵活,用途广泛。
运用符号检验、符号秩检验解决不能直接进行四则运算的定类和定序数据。
非参数检验的计算相对简单,易于理解。
但非参数检验方法对总体分布假定不多,缺乏针对性,且使用的是等级或符号秩,而不是实际数值,容易失去较多信息。
非参数卡方检验:用于检验样本数据的分布是否与某种特定分布情况相同。
非参数卡方检验通过三步检验:1.卡方统计量:X2=B 其中K 是样本分类的个数,0表示实际观测的频数,B 表示理论分布下的频数。
2.拟合优度检验:A.对总体分布建立假设。
B.抽样并编制频率分布表。
C.以原假设为真,导出期望频率。
D.计算统计量。
E.确定自由度,并查x2表,得到临界值。
F.比较x2值与临界值,做出判断。
3.独立性检验A.对总体分布建立假设。
B.抽样并编制r*c 列联表。
C.计算理论频数。
D.计算检验统计量。
E.确定自由度,并查x2表,得到临界值。
F.比较x2值与临界值,做出判断。
2.非参数卡方检验操作步骤第一步:将需检验的数据导入spss中并进行赋值后,点击分析非参数检验、旧对话框、卡方。
图2操作步骤第一步第二步:进入图中对话框后点击,首先将需检验的数据放入检验变量列表中,后在期望值选项中所以类别相等或者值(值:需要手动输入具体的分布情况)。
如果特殊情况需要调整检验置信区间,点击精确,进入图中下方对话框后点击蒙特卡洛法框里收到填入。
点击继续、确定。
图3操作步骤第二步第三步:如果需要看描述统计结果和四分位数值可以点击选项、勾选描述、四分位数。
点击继续、确实。
图4操作步骤第二步3.非参数卡方检验结果然后非参数卡方检验的描述统计、卡方检验频率表、检验统计结果就出来了。
卡方检验与非参数检验卡方检验与非参数检验是统计学中常用的两种假设检验方法。
它们在样本数据不满足正态分布或方差齐性等假设条件的情况下,仍可以进行假设检验,因此被称为非参数检验方法。
本文将详细介绍卡方检验与非参数检验的原理、应用以及比较。
一、卡方检验卡方检验是一种用于检验两个或多个分类变量之间是否存在相关性的统计方法。
它将实际观察到的频数与期望的频数进行比较,从而判断两个分类变量是否存在相关性。
卡方检验主要包括卡方拟合度检验、卡方独立性检验和卡方配对检验等。
1.卡方拟合度检验卡方拟合度检验适用于比较观察到的频数与理论上期望的频数是否有显著差异。
例如,我们可以通过卡方拟合度检验来判断一组骰子的点数是否是均匀分布的。
该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。
2.卡方独立性检验卡方独立性检验适用于比较两个分类变量之间是否存在相关性。
例如,我们可以使用卡方独立性检验来判断性别与喜好类别之间是否存在相关性。
该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。
3.卡方配对检验卡方配对检验适用于比较同一组体在两个时间点或处理条件下的观测值是否有差异。
例如,我们可以使用卡方配对检验来判断一种药物在服药前后对疾病症状的治疗效果。
该方法通过比较观察值和期望值之间的差异来判断是否有显著差异。
非参数检验是一种不依赖于总体分布的统计方法,它不对总体的分布形态做出任何假设,因此适用于任何类型的数据。
常见的非参数检验方法包括Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis H检验等。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于比较两组配对样本数据是否存在差异。
例如,我们可以使用Wilcoxon符号秩检验来判断一种药物在服药前后对患者血压的影响。
非参数检验介绍在统计学中,非参数检验是一种用于比较两个或多个样本之间差异的方法,而不要求对样本数据的总体分布作出假设。
与参数检验相比,非参数检验更加灵活,可以用于各种类型的数据以及各种情况下的推断分析。
什么是参数检验?在介绍非参数检验之前,我们先来了解一下参数检验。
参数检验是基于对总体分布的假设进行统计推断的方法。
在参数检验中,我们假设样本数据服从某种特定的分布(如正态分布),然后使用样本数据对该分布的参数进行估计,并基于这些参数进行统计推断。
非参数检验的优势与参数检验相比,非参数检验具有以下优势: 1. 更广泛的适用性:非参数方法不依赖于总体分布的假设,因此适用于各种类型的数据,无论其分布形态是什么样的。
2. 没有数据分布的假设:非参数方法不需要对数据的总体分布做出任何假设,因此可以应用于无法满足正态分布等假设的数据集。
3. 更具鲁棒性:非参数方法对异常值和偏离分布的数据更具有鲁棒性,能够更好地处理不完美的数据。
常见的非参数检验方法接下来,我们将介绍一些常见的非参数检验方法,以及它们适用的情况。
Mann-Whitney U检验Mann-Whitney U检验(也称为Wilcoxon秩和检验)用于比较两个独立样本的差异。
它适用于数据不满足正态分布假设且数据量较小的情况。
该检验基于将两个样本的观测值合并并对其进行排序,然后计算秩和值来比较两个样本的总体分布差异。
Kruskal-Wallis检验Kruskal-Wallis检验用于比较三个或多个独立样本的差异。
它可以看作是一种非参数的方差分析方法,适用于数据不满足正态分布假设的情况。
该检验基于将所有样本的观测值合并并对其进行排序,然后计算秩和值来比较不同样本的总体分布差异。
Wilcoxon符号秩检验Wilcoxon符号秩检验(也称为Wilcoxon符号秩和检验)用于比较两个配对样本的差异。
它适用于数据不满足正态分布假设的情况。
该检验基于对配对差值的绝对值进行排序,然后计算秩和值来判断两个样本差异是否显著。
SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
两个样本分布比较的统计学方法
两个样本分布比较的统计学方法有多种,具体方法的选择取决于数据的特性和研究的目的。
以下是一些常用的方法:
1. T检验:这是比较两个样本均值是否显著不同的常用方法。
它要求样本服从正态分布,且方差齐。
T检验可以分为独立样本T检验和配对样本T检验,前者适用于两组独立样本的比较,后者适用于同一组对象在不同条件下的比较。
2. Z检验或U检验:这是用于评估两个独立的顺序数据样本是否来自同一
个总体的非参数检验。
它适用于小样本数据,且不要求数据满足正态分布。
3. 方差分析(ANOVA):当样本量较大时,可以使用方差分析来比较多个样本的均值是否相同。
它要求多个样本的观察值满足独立性,服从正态分布,并且各组之间的方差齐。
4. Kruskal-Wallis H检验:当进行多个群组之间的比较时,如果群组不满足正态分布,可以使用Kruskal-Wallis H检验。
5. S-N-K法:这是一种两两比较方法,它采用Student Range分布进行所有各组均值间的配对比较,确保在原假设成立时总的α水准等于实际设定值。
6. Tukey法:这是一种控制一类错误的方法,对一、二类问题控制得很好。
7. Bonferroni法:这是LSD法的改进,能有效控制假阳性(第一类错误)。
在选择合适的统计学方法时,需要考虑数据的特性、研究的目的和研究设计等因素。
同时,为了保证结果的准确性和可靠性,需要进行适当的假设检验和结果的解读。
SPSS进⾏两配对样本的⾮参数检验(Wilcoxon符号秩检验)-实验⽅法-丁⾹通⼀、概述
⾮参数检验对于总体分布没有要求,因⽽使⽤范围更⼴泛。
对于两配对样本的⾮参数检验,⾸
选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
⼆、问题
为了研究某放松⽅法(如听⾳乐)对于⼊睡时间的影响,选择了10名志愿者,分别记录未进⾏
放松时的⼊睡时间及放松后的⼊睡时间(单位为分钟),数据如下笔。
请问该放松⽅法对⼊睡
时间有⽆影响。
本例可以采⽤配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑⽤⾮参数
检验。
三、统计操作
数据视图
菜单选择
打开如下的对话框。
两个独立样本的4种非参数检验方法1、两独立样本的Mann-Whitney U检验定义:两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。
Mann-Whitney U检验(Wilcoxon秩和检验)主要通过对平均秩的研究来实现推断。
秩:将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。
相同观察值(即相同秩,ties),取平均秩。
两独立样本的Mann-Whitney U检验的零假设H0:两个样本来自的独立总体均值没有显著差异。
将两组样本(X1 X2 …… X m)(Y1 Y2…… Y n)混合升序排序,每个数据将得到一个对应的秩。
计算两组样本数据的秩和W x,W y 。
N=m+n Wx+Wy=N(N+1)/2如果H0成立,即两组分布位置相同,W x应接近理论秩和m(N+1)/2;W y 应接近理论秩和n(N+1)/2)。
如果相差较大,超出了预定的界值,则可认为H0不成立。
2、两独立样本的K-S检验两独立样本的K-S检验与单样本K-S检验类似。
其零假设H0:样本来自的两独立总体分布没有显著差异。
检验统计量 D 为两个样本秩的累积分布频率的最大绝对差值。
当D较小时,两样本差异较小,两样本更有可能取自相同分布的总体;反之,当D较大时,两样本差异变大,两样本更有可能取自不同分布。
3、两独立样本的游程检验(Wald-Wolfwitz Runs)零假设是H0:为样本来自的两独立总体分布没有显著差异。
样本的游程检验中,计算游程的方法与观察值的秩有关。
首先,将两组样本混合并按照升序排列。
在数据排序时,两组样本的每个观察值对应的样本组标志值序列也随之重新排列,然后对标志值序列求游程。
SPSS将自动计算游程数得到Z统计量,并依据正态分布表给出对应的相伴概率值。
在统计学中,秩和检验方法是一种常用的非参数统计方法,它可以用于比较两组样本数据的中位数是否存在差异。
相比于参数统计方法,非参数统计方法不需要对总体分布做出假设,因此在一些情况下更加灵活和有效。
本文将详细介绍秩和检验方法的原理、应用和计算步骤。
一、秩和检验方法的原理秩和检验方法是基于样本数据的秩次来进行统计推断的一种方法。
在进行秩和检验时,我们首先将两组样本数据合并后按照大小顺序排列,并为每个数据赋予相应的秩次,然后计算两组样本数据的秩和,最后根据秩和的大小来判断两组样本数据的中位数是否存在差异。
秩和检验方法的原理基于以下两个假设:第一,样本数据是来自于同一总体分布的;第二,两组样本数据的中位数相等。
在进行秩和检验时,我们需要对这两个假设进行检验,以确定两组样本数据的中位数是否存在显著差异。
二、秩和检验方法的应用秩和检验方法广泛应用于医学、生物学、社会科学等领域的统计分析中。
例如,在医学实验中,我们需要比较两种治疗方法的疗效是否存在差异时,可以使用秩和检验方法来进行统计推断。
又如在心理学研究中,我们需要比较两组被试在某项测验成绩上是否存在差异时,也可以使用秩和检验方法来进行统计分析。
秩和检验方法的优点在于不需要对总体分布做出假设,因此更加灵活和适用于各种类型的数据。
同时,秩和检验方法也具有较高的鲁棒性,对于一些非正态分布的数据也能够给出准确的统计推断结果。
三、秩和检验方法的计算步骤在进行秩和检验时,我们需要按照以下步骤进行计算:1. 将两组样本数据合并,按照大小顺序排列,并为每个数据赋予相应的秩次。
2. 计算两组样本数据的秩和,分别记为T1和T2。
3. 计算秩和的期望值E(T),根据样本容量的大小和秩和的计算公式,得到E(T)的数值。
4. 根据E(T)的数值,可以计算出秩和的标准差SD(T),从而得到秩和的标准化统计量Z。
5. 根据Z的数值,可以查找标准正态分布表,计算P值,从而进行统计推断。
通过以上步骤,我们可以得到两组样本数据中位数是否存在差异的统计推断结果。
两个独立样本的4种非参数检验方法1、两独立样本的Mann-Whitney U检验定义:两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。
Mann-Whitney U检验(Wilcoxon秩和检验)主要通过对平均秩的研究来实现推断。
秩:将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。
相同观察值(即相同秩,ties),取平均秩。
两独立样本的Mann-Whitney U检验的零假设H0:两个样本来自的独立总体均值没有显著差异。
将两组样本(X1 X2 …… X m)(Y1 Y2…… Y n)混合升序排序,每个数据将得到一个对应的秩。
计算两组样本数据的秩和W x,W y 。
N=m+n Wx+Wy=N(N+1)/2如果H0成立,即两组分布位置相同,W x应接近理论秩和m(N+1)/2;W y 应接近理论秩和n(N+1)/2)。
如果相差较大,超出了预定的界值,则可认为H0不成立。
2、两独立样本的K-S检验两独立样本的K-S检验与单样本K-S检验类似。
其零假设H0:样本来自的两独立总体分布没有显著差异。
检验统计量 D 为两个样本秩的累积分布频率的最大绝对差值。
当D较小时,两样本差异较小,两样本更有可能取自相同分布的总体;反之,当D较大时,两样本差异变大,两样本更有可能取自不同分布。
3、两独立样本的游程检验(Wald-Wolfwitz Runs)零假设是H0:为样本来自的两独立总体分布没有显著差异。
样本的游程检验中,计算游程的方法与观察值的秩有关。
首先,将两组样本混合并按照升序排列。
在数据排序时,两组样本的每个观察值对应的样本组标志值序列也随之重新排列,然后对标志值序列求游程。
SPSS将自动计算游程数得到Z统计量,并依据正态分布表给出对应的相伴概率值。
Mann-Whitney检验How the Mann-Whitney test worksMann-Whitney检验⼜叫做秩和检验,是⽐较没有配对的两个独⽴样本的⾮参数检验。
思想是这样的:假定要检验两组数据之间有没有差异。
⾸先,不管分组把所有数据排序。
按照数值⼤⼩给定⼀个值叫做秩。
最⼩的值秩为1,最⼤的为N(假定两个样本总共有N个观察值)。
如果有相同的值,就得到相同的秩。
相同的值的秩是他们的秩的平均值。
如果两组的秩的和差距⽐较⼤,就会得出较⼩的p值,认为这两组间有显著差异。
软件:,只要输⼊数据,选择合适的参数,就可以很快得到结果。
How to think about the results of a Mann-Whitney test样本量太⼩的话效度会很低。
⽐如,如果总的数据只有7个或者更少的话,p值总是⼤于5%的。
Is the Mann-Whitney test the right test for these data?分析之前要先看⼀下,Mann-Whitney 检验是否适合⼿头的问题。
问题解释“误差”是独⽴的吗?“误差”指的是每个值和中位数的差异。
仅当误差的分布是随机的时候Mann-Whitney 检验的结果才有意义。
⼀般要保证独⽴样本。
样本不独⽴可能会导致误差不随机。
数据是配对的吗?如果数据是配对的,应该⽤Wilcoxon成对检验。
是只⽐较两组数据吗?Mann-Whitney 检验只⽤于两组数据的⽐较。
如果要⽐较多组数据,可以⽤ Kruskal-Wallis 检验。
⽤⼏次 Mann-Whitney 检验来⽐较多个组间的差异是不适合的,就如同ANOVA 不能⽤多次t检验代替⼀样。
两个分布的形状是相同的吗?Mann-Whitney 检验不需要假定数据符合某种分布,但是要求两个分布是相同的。
如果两组的分布差异⽐较⼤,可能需要数据转换使之相近。
是否⽐较中位数?Mann-Whitney 检验⽐较的是两组的中位数。