SPSS在两配对样本
- 格式:ppt
- 大小:648.50 KB
- 文档页数:14
SPSS两配对样本t检验
例题基于数据“减肥茶数据.sav”,通过对喝茶前体重和喝茶后体重这两组样本数据的对比分析,推断减肥茶是否具有明显的减肥作用。
这里,假设体重近似服从正态分布。
练习某医疗机构针对具有家族心脏病史的病人研发了一种新药。
为了检验这种新药的疗效是否显著,对16位病人进行为期半年的观察测试,测试指标为使用该药之前和之后的体重以及甘油三酯的水平的变化,得到数据如下表。
表1 服药前后的甘油三酯水平和体重数据
服药前后的甘油三酯水平和体重数据
服药前甘油三酯水平180.00 139.00 152.00 112.00 156.00 167.00 138.00 160.00 107.00 156.00 94.00 107.00 145.00 186.00 112.00 104.00
服药后甘油三酯水平100.00 92.00 118.00 82.00 97.00 171.00 132.00 123.00 174.00 92.00 121.00 150.00 159.00 101.00 148.00 130.00
服药前体重198.00 237.00 233.00 179.00 219.00 169.00 222.00 167.00 199.00 233.00 179.00 158.00 157.00 216.00 257.00 151.00
服药后体重192.00 225.00 226.00 172.00 214.00 161.00 210.00 161.00 193.00 226.00 173.00 154.00 143.00 206.00 249.00 140.00
假设甘油三酯水平和体重都近似服从正态分布。
问服药前后的甘油三酯水平和平均体重是否有显著差异?。
配对样本t检验-SPSS教程一、问题与数据某研究者拟分析某种药物是否可以降低低密度脂蛋白胆固醇(LDL)水平。
他招募了20位研究对象,测量基线低密度脂蛋白胆固醇水平,记录为LDL1,然后对患者进行4周的药物干预,再次测量低密度脂蛋白胆固醇水平,记录为LDL2,收集的部分数据如图1。
图1 部分数据二、对问题分析研究者想探索是否2个相关(配对)组别间的均数是否存在差异,可以使用配对样本t检验。
使用配对样本t检验时,需要考虑4个假设。
假设1:观测变量为连续变量。
假设2:分组变量包含两个分类、且相关(配对)。
假设3:两个相关(配对)组别间观测变量的差值没有明显异常值。
假设4:两个相关(配对)组别间观测变量的差值近似服从正态分布。
假设1和假设2取决于研究设计和数据类型,本研究数据满足假设1和假设2。
那么应该如何检验假设3和假设4,并进行配对样本t检验呢?三、SPSS操作3.1 检验假设3:两个相关(配对)组别间观测变量的差值没有明显异常值配对样本t检验中,异常值和正态性的假设检验都是基于两组间配对数值的差值进行的。
因此,我们首先需要计算两组观测变量的差值,并把它作为一个新变量储存,变量名为difference。
在主界面点击Transform→Compute Variable,出现Compute Variable对话框,在Target Variable中输入difference(新创建的变量名)。
将变量LDL1选入Numeric Expression框中,再双击下方的减号“-”,最后将变量LDL2选入Numeric Expression框中。
点击OK生成新变量difference。
如图2。
图2 Compute Variable本研究中,两组观测变量差值的计算方法是LDL1减LDL2。
实际研究中,差值的计算方法与研究设计和研究目的有关。
本研究关心的是某种药物是否可以降低LDL水平,如果差值是正数,则说明可以降低,反之亦然。
1、两配对样本T检验2、单因素方差分析3、多因素方差分析一、两配对样本T检验定义:两配对样本T检验就是根据样本数据对样本来自得两配对总体得均值就是否有显著性差异进行推断。
一般用于同一研究对象(或两配对对象)分别给予两种不同处理得效果比较,以及同一研究对象(或两配对对象)处理前后得效果比较。
两配对样本T检验得前提要求如下:两个样本应就是配对得。
在应用领域中,主要得配对资料包括:具有年龄、性别、体重、病况等非处理因素相同或相似者。
首先两个样本得观察数目相同,其次两样本得观察值顺序不能随意改变。
样本来自得两个总体应服从正态分布二、配对样本t检验得基本实现思路设总体服从正太分布,总体服从正太分布,分别从这两个总体中抽取样与,且两样本相互配对。
要求检验就是否有显著差异。
第一步,引进一个新得随机变量对应得样本值为,其中,这样,检验得问题就转化为单样本t检验问题。
即转化为检验Y 得均值就是否与0有显著差异。
第二步,建立零假设第三步,构造t统计量第四步,SPSS自动计算t值与对应得P值第五步,作出推断:若P值<显著水平,则拒绝零假设即认为两总体均值存在显著差异若P值>显著水平,则不能拒绝零假设,即认为两总体均值不存在显著差异三、SPSS配对样本t检验得操作步骤例题:研究一个班同学在参加了暑期数学、化学培训班后,学习成绩就是否有显著变化。
数据如表3所示。
1、操作步骤:首先打开SPSS软件1、1输入数据点击: 文件-----打开文本数据(D)-----选择需要编辑得数据-----打开图1 (这个就是已经导入数据得截图)在这里首先需要确定导入得数据就是符合两配对样本T检验得前提得。
1、2找到配对样本T检验得位置点击:菜单栏得分析按钮----选择比较均值-----配对样本T检验(如图2 )图21、3将数据对应导入配对样本T检验得选项框图1、31导入前得图像如图3图31、32导入后得图像如图4图4在此选项中需要设置“选项”得值为95%图5选择选项完成后,点击“继续”,接下来执行下面步骤:图6点击确定生成我们需要得表格:图7表1 成对样本统计量均值N 标准差均值得标准误对 1 数学1 72、94 18 20、157 4、751 数学2 84、78 18 10、339 2、437对 2 化学1 81、83 18 15、240 3、592 化学2 89、44 18 8、183 1、929该表1给出了本实验对样本得一些统计量。
t检验使用条件及在SPSS中的应用t检验是对均值的检验,有三种用途,分别对应不同的应用场景:1)单样本t检验(One Sample T Test):对一组样本,检验相应总体均值是否等于某个值;2)相互独立样本t检验(Independent-Sample T Test):利用来自某两个总体的独立样本,推断两个总体的均值是否存在显著性差异;3)配对样本t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
下文将分别介绍三种t检验的使用条件以及在SPSS中的实现。
一、单样本t检验1.1简介1)单样本t检验的目的利用来自某总体的样本数据,推断该总体的均值是否与指定的检验值之间存在显著性差异,它是对总体均值的检验。
2)单样本t检验的前提样本来自的总体应服从和近似服从正态分布,且只涉及一个总体。
如果样本不符合正态分布或不清楚总体分布的形状,就不能用单样本t检验,而要改用单样本的非参数检验。
3)单样本t检验的步骤a)提出假设单样本t检验需要检验总体的均值是否与指定的检验值之间存在显著性差异,为此,给定检验值μ,提出假设::μ = μ(原假设,null hypothesis):μ≠μ(备择假设,alternative hypothesis,)b)选择检验统计量属于总体均值和方差都未知的检验采用t统计量:μ,其中,和分别为样本均值和方差,t的自由度为n-1SPSS中还将显示均值标准误差,计算公式为,即t统计量的分母部分。
c)计算统计量的观测值和概率将样本均值、样本方差、μ带入t统计量,得到t统计量的观测值,查t分布界值表计算出概率P值。
d)给出显著性水平α,作出统计判断给出显著性水平α,与检验统计量的概率P值作比较。
当检验统计量的概率值小于显著性水平时,则拒绝原假设,认为总体均值与检验值μ之间有显著性差异;反之,如果检验统计量的概率值大于显著性水平,则接受原假设,认为总体均值与检验值μ之间没有显著性差异。