两数和(差)的平方
- 格式:ppt
- 大小:1.46 MB
- 文档页数:14
第8课 两数和(差)的平方公式班别: 姓名: 。
一、 两数和的平方:总结特征:一个二项式的完全平方,其结果有三项,其中两项是这个二项式各项的平方,还有一项是这个二项式中各项乘积的两倍。
注意:(a +b )2并不等价于a 2 +b 2 ,两者一般情况下是不等的。
例:计算:(1)(2a +2b )2 (2)(2x -3y )2 (3) 20012;解:(1)原式=(2a )2+2 • 2a • 2b+(2b )2 =4a 2+2ab +4b 2 (2)原式=( )2-2 •( )•( )+( )2=(3) 20012 =( + ) 2=即学即练:计算:(1)(x +2)2; (2)(3x +2y )2; (3)(0.5a -2b )2;三、巩固练习:(A组)1、判断题;(1)(a-b)2=a2-b 2 ()(2)(a+2b)2=a2+2ab+2b2 ()(3)(-a-b)2= -a2-2ab+b 2 ()(4)(a-b)2=(b-a)2 ()2、计算:(1)(x+3)2;(2)(2x+y)21n)2(3)(5x-3y)2;(4)(2m-2(5)(-4m+n)2;(6)(-4m-n)23、要给一边长为a米的正方形桌子铺上桌布,四周均留出0.1米宽,问桌布面积需要多大?4.填空:(1)x 2+ +9=( + )2;(2)4a 2+kab +9b 2是完全平方式,则k = ;(3)( )2-8xy +y 2=( - y )25.已知x 2+y 2=15,xy =5,求(x +y )2和(x -y )2的值。
巩固练习1. 运用平方差或完全平方公式计算:(1)(2a +5b )(2a -5b ); (2)(-2a -1)(-2a +1);(3)(2a -4b )2; (4)(2a +31b )2(5)(21a -31b )2 (6) 100222.新世纪中学教学楼前有一块边长为a 米的正方形空地。
现准备将这块空地四周均留出b 米宽修筑围坝,中间修建喷泉水池。
两数和(差)的平方课前知识管理1、完全平方公式有两个:〔a+b 〕2=a2+2ab+b2,〔a-b 〕2=a2-2ab+b2.即,两数和〔或差〕的平方,等于这两个数的平方和,加上〔或者减去〕这两个数的积的2倍.这两个公式叫做完全平方公式.它们可以合写在一起,为〔a ±b 〕2=a2±2ab+b2.为便于记忆,可形象的表达为:〝首平方、尾平方,2倍乘积在中央〞.几何背景:如图,大正方形的面积可以表示为〔a+b 〕2,也可以表示为S =S Ⅰ+ S Ⅱ+ S Ⅲ+S Ⅳ,同时S =a2+ab+ab+b2=a2+2ab+b2.从而验证了完全平方公式〔a+b 〕2=a2+2ab+b2.2、完全平方公式的特征:左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上〔这两项相加时〕或减去〔这两项相减时〕这两项乘积的2倍.公式中的字母可以表示具体的数〔正数或负数〕,也可以表示单项式或多项式等代数式.只要符合这一公式的结构特征,就可以运用这一公式.3、在使用完全平方公式时应注意问题:〔1〕千万不要发生类似〔a ±b 〕2=a2±b2的错误;〔2〕不要与公式〔ab 〕2=a2b2混淆;〔3〕切勿把〝乘积项〞2ab 中的2漏掉;〔4〕计算时,应先观察所给题目的特点是否符合公式的条件,如符合,那么可以直接套用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,那么运用乘法法那么进行计算.名师导学互动典例精析:知识点1:改变公式中b a ,的符号:例1、运用完全平方公式计算: ()252y x +-【解题思路】本例改变了公式中b a ,的符号,处理方法之一:把两式分别变形为()()[]225252y x y x --=+-()252y x -=再用公式计算〔反思得:()()()()2222;b a b a a b b a +=---=-〕; 方法二:把两式分别变形为:()()222552x y y x -=+-后直接用公式计算;方法三:把两式分别变形为()()[]225252y x y x +-=+-后直接用公式计算.【解】()252y x +-=()()()22222420252252525x xy y x x y y x y +-=+⨯⨯-=-.【方法归纳】对乘法公式的最初运用是模仿套用,套用的前提是确定是否具备使用公式的条件,关键是正确确定〝两数〞即〝a 〞和〝b 〞.对应练习:()2b a --知识点2:改变公式中的项数例2、计算:()2c b a ++【解题思路】完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾.所以在运用公式时, ()2c b a ++ 可先变形为()[]2c b a ++ 或()[]2c b a ++ 或者()[]2b c a ++ ,再进行计算.【解】()2c b a ++=()[]2c b a ++【方法归纳】运用整体思想可以使计算更为简便,快捷.对应练习:〔2a -b +4〕2知识点3:改变公式的结构例3、运用公式计算: 〔1〕()()y x y x 22++; 〔2〕()()b a b a --+.【解题思路】本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了.【解】〔1〕()()y x y x 22++=()2222422y xy x y x ++=+;〔2〕()()b a b a --+=()2222b ab a b a ---=+-.【方法归纳】观察到两个因式的系数有倍数关系或相反关系是正确变形并利用公式的前提条件.对应练习:计算:()()a b b a --知识点4:利用公式简便运算例4:计算:9992【解题思路】本例中的999接近1000,故可化成两个数的差,从而运用完全平方公式计算.【解】()=+-=+-=-=120001000000120001000110009992222998001.【方法归纳】有些数计算时可拆成两数〔式〕的平方差、完全平方公式的形式,正用乘法公式可使运算简捷、快速.对应练习:计算:100.12知识点5:公式的逆用例5、计算: ()()()()2233525++++-+x x x x【解题思路】此题假设直接运用乘法公式和法那么较繁琐,仔细分析可发现其结构恰似完全平方公式()2222b ab a b a +-=-的右边,不妨把公式倒过来用.【解】()()()()2233525++++-+x x x x =()()[]4352=+-+x x .【方法归纳】解题中,•假设把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.对应练习:化简()()()()223372272++++-+a a a a知识点6:公式的变形例6、实数a 、b 满足()1,102==+ab b a .求以下各式的值:〔1〕22b a +;〔2〕()2b a -【解题思路】此例是典型的整式求值问题,假设按常规思维把a 、b 的值分别求出来,非常困难;仔细探究易把这些条件同完全平方公式结合起来,运用完全平方公式的变形式很容易找到解决问题的途径.【解】〔1〕22b a +=()822=-+ab b a ; 〔2〕()()ab b a b a 422-+=-=6.【方法归纳】 ()()ab b a b a 422-+=-;()(),422ab b a b a +-=+()()ab b a b a ab b a b a 2,2222222+-=+-+=+熟悉完全平方公式的变形式,是相关整体代换求值的关键.对应练习::x +y =-1,x2+y2=5,求xy 的值.知识点7:乘法公式的综合应用例7、计算:()()z y x z y x -+++【解题思路】此例是三项式乘以三项式,特点是:有些项相同,另外的项互为相反数。
尊敬的各位评委、老师大家好!我是来自六台中心学校的数学老师刘超。
今天我说课题目是华师大版八年级(上)册第12章第3节第二课时:两数和(差)的平方,主要内容是公式的推导及应用,下面我就从几个方面来介绍这堂课的说课内容:一、说教材1 教材分析:本节课是学生已经掌握乘法公式中的两数和乘以这两数的差之后进行学习的。
不仅是学习幂的运算、单项式乘法、多项式乘法知识的应用,是对多项式乘法中出现的较为特殊的算式的又一种归纳、总结,渗透从一般到特殊的思想;也是今后学习因式分解、解一元二次方程、配方法、分式运算知识的基础,不但可以提高学生运算速度和准确率,更起到了承上启下的作用,它也是用推理的形式进行恒等变形的又一次训练,因而它是本章的一个重点内容,通过乘法公式的学习可以简化某些整式的运算、培养学生的求简意识及简便方法巧算的意识。
2 教材处理:(1)教材中的多项式乘法导入枯燥乏味,降低学生学习兴趣,故换成从现实生活的数学情境出发,更体现数学源于生活,又服务于生活。
(2)补充了两数和(差)的平方公式又称作完全平方公式,使学生对此有个简单了解,为今后学习打下基础。
(3)例题稍作改动,从其心里上促使认真听课的态度。
3 重点难点:义务教育阶段的数学课程应以培养学生的能力,尤其是创新、创造能力为重,其基本出发点是促进学生全面、持续、和谐地发展。
参照义务教育阶段《数学课程标准》的要求,确定本节课的教学重难点如下:重点:经历公式的推导和发现,掌握公式的结构特征,学会运用公式进行简单的计算,体会公式的便捷性。
难点:公式的应用以及广泛意义上理解公式中字母a、b的含义,并会判断要计算的代数式是哪两个数的和(或差)的平方。
4教学目标:义务教育阶段的数学课程标准的基本精神和理念,努力落实基础知识、基本技能、基本思想与基本活动经验,培养学生发现问题、提出问题、分析问题与解决问题的能力,其基本出发点是促进学生全面、持续、和谐地发展。
根据以上指导思想,同时参照义务教育阶段《数学课程标准》严格控制要求与难度,确定本节课的教学目标如下:知识技能目标:(1)了解公式的几何背景,理解并掌握公式的结构特征。