两数和(差)的平方公式教案
- 格式:docx
- 大小:72.64 KB
- 文档页数:4
12.3.2 两数和(差)的平方教学目标:1、知识与技能:使学生能正确叙述两数和(差)的平方公式,并能运用它进行计算;培养学生分析问题、解决问题的能力,以及运算能力.2、过程与方法:在公式的形成过程的教学中,培养学生观察、归纳、猜想、论证的能力,以及分析、综合、抽象和概括的能力;了解“特殊一般特殊”的认识规律,体现和学习研究问题的方法;渗透由特殊到一般再由一般到特殊的思想;渗透数形结合思想.3、情感态度与价值观:通过学生自己分析得出结论,使他们感受成功的喜悦从而激发学生学习兴趣。
教学重、难点:教学重点:两数和(差)的平方公式的推导及结构特征和公式直接运用;教学难点:对具体问题会运用公式及理解公式中的字母的广泛含义。
教学方法:(1)、"探究式学习”。
在教学中,突出学生的主动性,让学生通过观察特点——分析——归纳总结——得出结论,初步掌握探究的学习方法。
(2)、在学生的主体参与互动中,培养学生能力,帮助学生结合公式结构特点,分析式子结构,运用转化思想加以解决。
(3)、利用ppt课件教学过程:(一)、温故新知1、两数和乘以这两数差的乘法公式是什么?(a+b)(ab)=a2b2 两数和与这两数差的积,等于这两数的平方差.2、口述多项式乘以多项式法则。
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
情景导入(童话故事)很久很久以前,有一个国家的公主被妖怪抓到了森林里,两个农夫一起去森林打猎时打死了妖怪救出了公主。
国王要赏赐他们, 这两个农夫原来各有一块边长为a米的正方形土地, 第一个农夫就对国王说:“您可不可以再给我一块边长为b米的正方形土地呢?”国王答应了他,国王问第二个农夫:“你是不是要跟他一样啊?”第二个农夫说:“不,我只要您把我原来的那块地的边长增加b米就好了。
国王想不通了,他说:“你们的要求不是一样的吗?”你认为他们的要求一样吗聪明的孩子们,你们能画图拼一拼么!用不同的形式表示第二个农夫田地的总面积,并进行比较,你发现了什么?我们共同发现:(a+b)2= a2+2ab+b22、交流,讨论,发现规律:(多媒体展示)两数和(差)的平方公式的文字叙述:两个数的和(或差)的平方,等于这两个数的平方和加上(或减去)它们乘积的2倍。
《两数和(差)的平方》一、教材分析本课是华东师大版八年级(上)第12章第3节《两数和(差)的平方》,主要研究两数差的平方公式,并对两数和(差)的平方进行总结,通过学习能对两数和(差)的平方运算能进行顺利的计算,对公式的特点能有较为深刻的认识,也是以后学习因式分解和配方法解题的关键.二、设计思想本课对两数差的平方公式进行探索,通过先由学生自己自主探索,教师进行观察,就学生采用的方法进行分析,进一步培养学生的分析能力和自主探索的习惯,让学生主动的从事计算,交流等活动,形成自己对数学知识的理解和有效的学习模式.三、教学目标1、知识与技能①理解并掌握两数的和(差)平方的公式.②能正确区分在实际运算中采用了那个公式或采用了怎样的运算思路,进一步培养学生分析问题的能力.2、过程与方法①能自主探索两数差的平方公式.②通过例子与练习能正确进行计算.3、情感、态度和价值观①经历自主探索、表达交流等活动,体验数学学习需要合情推理,更需要合作交流.②让学生在自主探索的过程中加深对两数和(差)平方公式的理解,激发求知欲望.③培养逆向思维能力.四、教学重点、难点及解决方法重点:两数和(差)的平方公式.难点:两数和(差)的平方公式在解题时的运用.解决方法:对于两数差的平方公式,通过学生先自主探索,然后又师生共同进行总结的方法,形成对问题解决的思路,并在解决的过程中,对公式进行总结.然后进行应用,在应用时,可以既强调正确套用公式,又强调利用推导公式的思路,从而形成对公式本质的认识.五、教学类型研究性学习六、教具准备多媒体课件等七、教学过程:说明:如果时间允许,可进行下列活动,如果时间不允许,下列活动可安排在课后完成:⑴课本37页习题12.3第4题填空:①226__(__)a a a ++=+; ②22420__(2__)x x x -+=-;③222()____a b a b +=-+; ④()22()____x y x y -+=+.⑵阅读课本35页的读一读及课本37页的阅读材料. 八、作业课本37页习题12.3第2题的⑶、⑷及第3题. 九、板书设计 十、教后反思。
两数和(差)的平方教案设计泌阳县春水镇中心学校刘老师教学内容教科书P.32——P.34的内容本节课是华师大八年级(上)义务教育课程标准实验教材第12章第3节第二课时的内容。
它是学生在已经掌握整式的加减法、幂的运算、单项式乘法、多项式乘法之后进行学习的。
一方面它是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面也是后续学习的基础,不仅对提高学生运算速度、准确率有较大作用,更是今后学习因式分解、解一元二次方程、配方法、分式运算的知识基础,同时乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端。
通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
一、教学目标1.能说出两数和的平方与两数差的平方公式的特点,并会用式子表示。
2.能正确地利用两数和的平方与两数差的平方公式进行多项式的乘法。
3.通过两数和的平方与两数差的平方公式的得出,使学生明白数形结合的思想。
二、教学重难点重点:掌握公式的特点,牢记公式。
难点:对具体问题会运用公式以及理解字母的广泛含义。
关键:引导学生对本节课公式结构特征进行理解,并注意同两数与这两数差的积的公式进行区分。
教学过程一、创设情景、问题导入很久很久以前,有一个国家的公主被妖怪抓到了森林里,两个农夫一起去森林打猎时打死了妖怪救出了公主。
国王要赏赐他们, 这两个农夫原来各有一块边长为a米的正方形土地, 第一个农夫就对国王说:“您可不可以再给我一块边长为b 米的正方形土地呢?”国王答应了他,国王问第二个农夫:“你是不是要跟他一样啊?”第二个农夫说:“不,我只要您把我原来的那块地的边长增加b米就好了。
国王想不通了,他说:“你们的要求不是一样的吗?” 你认为他们的要求一样吗?以小组为单位,讨论交流a2+b2与(a+b)2的大小.思考怎样计算(a+b)2,结果是多少?二、探究新知,得出公式方法一、利用代数方法计算(a+b)2=(a+b) (a+b)=a2+2ab+b2方法二、利用几何图形的面积的两种表示方法验证。
14.2.1平方差公式教案一、内容和内容解析1.内容:平方差公式.2.内容解析平方差公式是以多项式乘法为基础知识,某些具有特殊形式的多项式相乘,可以写成公式的形式。
当遇到特殊形式的多项式相乘时,可以直接运用公式写出结果。
平方差公式是多项式乘法公式的一种,即两个数的和与这两个数的差的积,等于这两个数的平方差。
平方差公式是因式分解中公式法的重要基础,在代数中具有广泛的应用。
平方差公式的符号表示和语言表述揭示了公式的结构特征。
公式(a+b)(a−b)= a2−b2中的字母a,b可以是单项式也可以是多项式,乃至任何代数式。
平方差公式的得出,以多项式乘法与合并同类项的知识为基础,从一般形式的整式乘法运算到对特殊形式的乘法运算推导出乘法公式,体现了一般到特殊的思想方法。
探索平方差公式的过程,从具体的具有特殊形式的几组多项式乘法的运算结果中,通过观察、比较,抽象概括出一般形式,并通过推理获得公式的符号表示及语言表述,体现了从具体到抽象地研究问题的方法。
在用图形说明平方差公式时,又蕴含了数形结合的思想。
综上所述,本课教学重点:平方差公式二、目标和目标解析1、目标(1)理解平方差公式的推导过程;(2)掌握平方差公式的结构特征并能运用公式进行计算;(3)经历平方差公式的探究过程中,体验从具体到抽象、从一般到特殊的数学思维方法,感知数形结合的数学思想。
2.目标解析达成目标(1)的标志:学生知道平方差公式是多项式乘法的特殊形式,能根据多项式的乘法法则推导出平方差公式。
达成目标(2)的标志:理解平方差公式的结构特征,会用符号表示公式,能用文字语言表述公式内容,在字母表示具体的数字、字母、单项式、多项式时能准确找出公式中的相同项和相反项,并能正确进行计算。
达成目标(3)的标志:在用多项式乘法推导平方差公式时感悟从具体到抽象、从一般到特殊的思想方法;在利用几何图形的面积验证公式的过程中,感知数形结合的数学思想。
三、教学问题诊断分析由于公式(a+b)(a−b)= a2−b2中的a,b本身可能为负数,而且a、b可以是具体的数、单项式、多项式等,情況比较复杂,对于初次接触平方差公式的学生来说,找准哪个数或式相当于公式中的“第一个数”a,哪个数或式相当于公式中的“第二个数”b,尤其是当第一个数a为负数时,如:(-x+2y)(-x-2y),诸如此类题型容易混淆,学生感到会有困难。
12.3.2两数和〔差〕的平方根底知识1.2222)(b ab a b a ++=+;即两数和的平方,等于这两数的平方和减去它们的积的2倍。
这个公式叫做两数和的平方公式。
2222)(b ab a b a +-=-;即两数差的平方,等于这两数的平方和加上它们的积的2倍。
这个公式叫做两数差的平方公式。
以上两个公式俗称完全平方公式2.完全平方公式的特点:〔1〕左边是一个二项式的完全平方;〔2〕右边是二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项为哪一项左边二项式中两项积的两倍;〔3〕公式中的字母,可以代表一个数,还可以代表一个代数式。
3.完全平方公式的变化与推广:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+)()(2222b a b a ab +-+=或)]()[(21222b a b a ab +-+= ab b a b a 4)()(22-+=-,ab b a b a 4)()(22+-=+例题例1.计算:2123x y ⎫⎛-+ ⎪⎝⎭. 【答案】224439y x xy -+. 【分析】利用完全平方差公式求解即可.【详解】 解:原式2123x y ⎫⎛=-+ ⎪⎝⎭ 224439y x xy -+=. 【点睛】此题主要考查有理数及整式的运算,属于根底题型.例2.阅读材料:假设2222210x xy y y ++-+=,求x ,y 的值.解:∵2222210x xy y y ++-+=,∴2222210x xy y y y +++-+=,即22()(1)0x y y ++-=.∴0,10x y y +=-=.∴1,1x y =-=.根据你的观察,探究以下问题:〔1〕224428160m mn n n -+++=,求3()m n --的值.〔2〕24,6130a b ab c c -=+-+=,求a b c ++的值.【答案】16.〔1〕18;〔2〕3 【分析】〔1〕将4m 2-4mn +2n 2+8n +16=0的左边分组配方,然后根据偶次方的非负性,可求出m ,n 的值,代入代数式即可得到结论;〔2〕由a -b =4,得到a =b +4,代入的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a +b +c 的值.【详解】解:〔1〕∵4m 2-4mn +2n 2+8n +16=(2m )2-4mn +n 2+n 2+8n +16=〔2m -n 〕2+〔n +4〕2=0, ∴2m -n =0,n +4=0,∴m =-2,n =-4,∴〔m -n 〕-3=18; 〔2〕∵a -b =4,即a =b +4,代入得:〔b +4〕b +c 2-6c +13=0,整理得:〔b 2+4b +4〕+〔c 2-6c +9〕=〔b +2〕2+〔c -3〕2=0,∴b +2=0,且c -3=0,即b =-2,c =3,a =2,那么a +b +c =2-2+3=3.【点睛】此题考查了完全平方公式的应用,结合偶次方的非负性求值的问题,此题属于中档题.练习1.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形的面积来解释一些代数恒等式,例如图1可以用来解22()()4a b a b ab +--=,那么通过图2中阴影局部面积的计算验证的恒等式是()A .222()2a b a ab b -=-+B .22()()a b a b a b -=+-C .222()2a b a ab b +=++D .22()(2)2a b a b a ab b -+=+-2.以下各式中,与2(1)x -相等的是()A .221x x -+B .221x x --C .21x -D .2x 3.9x 2﹣kx +4是一个完全平方式,那么常数k 的值为〔〕A .6B .±6C .12D .±12 4.以下各式中,是完全平方式的是〔〕A .269x x -+B .221x x +-C .2525x x -+D .216x + 5.m 2+n 2=1,〔m +n 〕2=2,那么mn 的值是〔 〕A .14B .12C .1D .2 6.计算:()22x y +=_____.7.如果2236x kxy y ++是完全平方式,那么k 的值是________ .8.22,()1xy x y =-=,那么22x y +=_________.9.x ,y 244y y -=-,假设3axy x y -=,那么实数a 的值为_____________.10.假设()292116x k x --+是完全平方式,那么k 的值为______.11.计算:〔1〕()225a b -+;〔2〕(2)(2)(1)(5)x x x x +-+-+12.先化简,再求值:()()()2211x x x -+--,其中12x =-.13.()218x y +=,()26x y -=,求22x y +及xy 的值. 14.化简:22()()a b a b -+15.〔1〕先化简,再求值,2(32)(32)5(1)(21)x x x x x +-----,其中13x =-. 〔2〕己知2226100x y x y +-++=,求x y +的值.16.[阅读理解]假设x 满足(80)(60)30x x --=,求22(80)(60)x x -+-的值. 解:设80x a -=,60x b -=,那么(80)(60)30x x ab --==,(80)(60)20a b x x +=-+-=,∴222222(80)(60)()220230340x x a b a b ab -+-=+=+-=-⨯=.[解决问题]假设x 满足22(30)(20)120x x -=+-,求(30)(20)x x --的值.参考答案1.A【详解】解:阴影局部的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.应选:A .2.A【详解】解:22(1)21x x x -=-+,应选:A .3.D【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:∵9x 2-kx +4是一个完全平方式,∴-k =±12, 解得:k =±12, 应选:D .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解此题的关键.4.A【分析】根据完全平方公式:〔a ±b 〕2=a 2±2ab +b 2分析各个式子. 【详解】解:()22693x x x -+=-,是完全平方式,221x x +-,2525x x -+,216x +不是完全平方式, 应选A .【点睛】此题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求掌握完全平方公式,并能从复杂的关系中找到平方项和乘积项,利用公式写成平方的形式.5.B【分析】根据m 2+n 2的值,利用完全平方公式将〔m +n 〕2展开进行计算即可.【详解】解:∵m 2+n 2=1,∴〔m +n 〕2=2,∴m 2+2mn +n 2=2,∴1+2mn =2,∴2mn =1,∴mn =12,应选:B .【点睛】此题考查完全平方公式,解题的关键是熟练掌握完全平方公式.6.2244.x xy y ++【分析】直接利用完全平方公式进行计算即可得到答案.【详解】解:()222244x y x xy y +=++,故答案为:2244.x xy y ++【点睛】此题考查的是完全平方公式的运用,掌握利用完全平方公式进行运算是解题的关键. 7.±12【分析】根据完全平方公式即可得到结论.【详解】解:∵2236x kxy y ++是完全平方公式,∴2236x kxy y ++=〔x+6y 〕2或者2236x kxy y ++=〔x-6y 〕2,∴k=+12或k=-12,故答案为:±12. 【点睛】此题考查完全平方公式,注意完全平方公式中间项是±2ab . 8.5【分析】根据222()2x y x y xy -=+-可得222()2x y x y xy +=-+,代入得出答案.【详解】解:∵22,()1xy x y =-=,∴222()2145x x y y y x =-=+++=,故答案为:5.【点睛】此题考查利用完全平方公式变形求值.熟练掌握完全平方公式和它的变形式是解题关键.9.76【分析】2440y y -+=2(2)0y -=,可得x ,y 的值,将之代入3axy x y -=中可得结果.【详解】2440y y -+=,2(2)0y -=,390,20x y ∴+=-=,解得:3,2x y =-=,代入3axy x y -=,得(3)23(3)2a ⨯-⨯-⨯-=, 解得:76a =, 故答案为:76. 【点睛】此题主要考查了完全平方公式及非负数的性质,属于根底题,关键是根据非负数的性质求出x ,y 的值再求解.10.11-或13【分析】利用完全平方式的定义可得()21234k --=⋅⋅或()()21234k --=⋅⋅-,求解即可.【详解】解:∵()292116x k x --+是完全平方式,∴()21234k --=⋅⋅或()()21234k --=⋅⋅-,解得11k =-或13,故答案为:11-或13.【点睛】此题考查利用完全平方式的定义求参数,掌握完全平方式的定义是解题的关键. 11.〔1〕2242025a ab b -+;〔2〕41x【分析】〔1〕根据完全平方公式直接计算即可;〔2〕根据多项式乘多项式的法那么进行计算即可.【详解】〔1〕解:()225a b -+〔2〕原式2242255x x x x x x =-+-++--41x .【点睛】此题考查完全平方公式、多项式乘多项式,解题的关键是熟练掌握完全平方公式、多项式乘多项式运算规那么.12.3x -,72- 【分析】根据多项式乘多项式的运算法那么、完全平方公式把原式化简,把x 的值代入计算即可.【详解】解:()()221(1)x x x -+-- 3x =-, 当12x =-时,原式=17322--=-. 【点睛】此题考查了整式的化简求值,掌握整式的混合运算法那么是解题的关键.13.2212x y +=;3xy =.【分析】根据完全平方公式对式子进行变形,并将条件整体代入即可.【详解】解:()222222222222222222x y x y x y x y x y x y xy xy +++++++-++=== ()()2222222218612222x y x x y x xy y y y x ++=++-++==+-=; ()()()222222221863444x xy y x xy y x y x y ++--++---====. 【点睛】此题考查了完全平方式,把式子灵活变形是解题关键.14.42242a a b b -+【分析】利用平方差公式和完全平方公式计算即可;【详解】解:()()()2222224224()()2a b a b a b a b a b a a b b ==-=-+⎡⎤⎣⎦-+-+; 【点睛】此题考查了平方差公式和完全平方公式,灵活应用平方差公式及完全平方公式是解题的关键.15.〔1〕95x -,8-;〔2〕-2【分析】〔1〕根据平方差公式和单项式乘多项式、完全平方差公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答此题.〔2〕将等式利用完全平方公式变形,再利用非负数的性质得到x 和y 值,代入计算即可.【详解】解:〔1〕2(32)(32)5(1)(21)x x x x x +-----=2229455414x x x x x --+--+=95x - 将13x =-代入, 原式=1953⎛⎫⨯-- ⎪⎝⎭=8-; 〔2〕∵2226100x y x y +-++=,∴2221690x x y y -++++=,∴()()22130x y -++=,∴x -1=0,y +3=0,∴x =1,y =-3,∴132x y +=-=-.【点睛】此题考查整式的混合运算-化简求值,完全平方公式的应用,解答此类问题的关键是明确整式的混合运算的计算方法.16.10【分析】根据题目所给的方法,设30,20x a x b -=-=,那么22120a b +=,再根据222()2a b a b ab +=+-,即可得出答案. 【详解】解:设30,20x a x b -=-=,22(30)(20)120x x --=+,22120a b ∴+=,那么=3020120a b x x +-+-=,222()2a b a b ab +=+-,【点睛】此题主要考查了完全平方公式,解得的关键是:熟练掌握完全平方公式的变式应用是进行计算的关键.。
两数和(差)的平方课前知识管理1、完全平方公式有两个:〔a+b 〕2=a2+2ab+b2,〔a-b 〕2=a2-2ab+b2.即,两数和〔或差〕的平方,等于这两个数的平方和,加上〔或者减去〕这两个数的积的2倍.这两个公式叫做完全平方公式.它们可以合写在一起,为〔a ±b 〕2=a2±2ab+b2.为便于记忆,可形象的表达为:〝首平方、尾平方,2倍乘积在中央〞.几何背景:如图,大正方形的面积可以表示为〔a+b 〕2,也可以表示为S =S Ⅰ+ S Ⅱ+ S Ⅲ+S Ⅳ,同时S =a2+ab+ab+b2=a2+2ab+b2.从而验证了完全平方公式〔a+b 〕2=a2+2ab+b2.2、完全平方公式的特征:左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上〔这两项相加时〕或减去〔这两项相减时〕这两项乘积的2倍.公式中的字母可以表示具体的数〔正数或负数〕,也可以表示单项式或多项式等代数式.只要符合这一公式的结构特征,就可以运用这一公式.3、在使用完全平方公式时应注意问题:〔1〕千万不要发生类似〔a ±b 〕2=a2±b2的错误;〔2〕不要与公式〔ab 〕2=a2b2混淆;〔3〕切勿把〝乘积项〞2ab 中的2漏掉;〔4〕计算时,应先观察所给题目的特点是否符合公式的条件,如符合,那么可以直接套用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,那么运用乘法法那么进行计算.名师导学互动典例精析:知识点1:改变公式中b a ,的符号:例1、运用完全平方公式计算: ()252y x +-【解题思路】本例改变了公式中b a ,的符号,处理方法之一:把两式分别变形为()()[]225252y x y x --=+-()252y x -=再用公式计算〔反思得:()()()()2222;b a b a a b b a +=---=-〕; 方法二:把两式分别变形为:()()222552x y y x -=+-后直接用公式计算;方法三:把两式分别变形为()()[]225252y x y x +-=+-后直接用公式计算.【解】()252y x +-=()()()22222420252252525x xy y x x y y x y +-=+⨯⨯-=-.【方法归纳】对乘法公式的最初运用是模仿套用,套用的前提是确定是否具备使用公式的条件,关键是正确确定〝两数〞即〝a 〞和〝b 〞.对应练习:()2b a --知识点2:改变公式中的项数例2、计算:()2c b a ++【解题思路】完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾.所以在运用公式时, ()2c b a ++ 可先变形为()[]2c b a ++ 或()[]2c b a ++ 或者()[]2b c a ++ ,再进行计算.【解】()2c b a ++=()[]2c b a ++【方法归纳】运用整体思想可以使计算更为简便,快捷.对应练习:〔2a -b +4〕2知识点3:改变公式的结构例3、运用公式计算: 〔1〕()()y x y x 22++; 〔2〕()()b a b a --+.【解题思路】本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了.【解】〔1〕()()y x y x 22++=()2222422y xy x y x ++=+;〔2〕()()b a b a --+=()2222b ab a b a ---=+-.【方法归纳】观察到两个因式的系数有倍数关系或相反关系是正确变形并利用公式的前提条件.对应练习:计算:()()a b b a --知识点4:利用公式简便运算例4:计算:9992【解题思路】本例中的999接近1000,故可化成两个数的差,从而运用完全平方公式计算.【解】()=+-=+-=-=120001000000120001000110009992222998001.【方法归纳】有些数计算时可拆成两数〔式〕的平方差、完全平方公式的形式,正用乘法公式可使运算简捷、快速.对应练习:计算:100.12知识点5:公式的逆用例5、计算: ()()()()2233525++++-+x x x x【解题思路】此题假设直接运用乘法公式和法那么较繁琐,仔细分析可发现其结构恰似完全平方公式()2222b ab a b a +-=-的右边,不妨把公式倒过来用.【解】()()()()2233525++++-+x x x x =()()[]4352=+-+x x .【方法归纳】解题中,•假设把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.对应练习:化简()()()()223372272++++-+a a a a知识点6:公式的变形例6、实数a 、b 满足()1,102==+ab b a .求以下各式的值:〔1〕22b a +;〔2〕()2b a -【解题思路】此例是典型的整式求值问题,假设按常规思维把a 、b 的值分别求出来,非常困难;仔细探究易把这些条件同完全平方公式结合起来,运用完全平方公式的变形式很容易找到解决问题的途径.【解】〔1〕22b a +=()822=-+ab b a ; 〔2〕()()ab b a b a 422-+=-=6.【方法归纳】 ()()ab b a b a 422-+=-;()(),422ab b a b a +-=+()()ab b a b a ab b a b a 2,2222222+-=+-+=+熟悉完全平方公式的变形式,是相关整体代换求值的关键.对应练习::x +y =-1,x2+y2=5,求xy 的值.知识点7:乘法公式的综合应用例7、计算:()()z y x z y x -+++【解题思路】此例是三项式乘以三项式,特点是:有些项相同,另外的项互为相反数。
平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。
2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。
二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。
2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。
3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。
三、教学重点与难点1.教学重点:平方差公式的推导和应用。
2.教学难点:平方差公式的理解和灵活运用。
四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。
2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。
3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。
4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。
5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。
6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。
7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。
8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。
五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。
2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。
3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。
学习必备欢迎下载《两数和(差)的平方》教学设计课题:两数和(差)的平方科目数学教学对象初二年级学生课时1提供者单位一、教学目标情感态度价值观:经历探索两数和的平方公式的过程,进一步发展学生的符号感和推理能力。
过程与方法:小组合作探究,教师积极引导。
知识与技能:1、理解两数和的平方的公式,掌握公式的结构特征,并熟练地应用公式进行计算2、培养学生探索能力和概括能力,体会数形结合的思想。
二、教学内容分析完全平方公式是我们在学习整式乘以整式的最后一个内容,它是把两数和(差)根据前面的算法与图形结合求解之后,给出一个直接的公式,使得以后的计算更方便。
在以后的分解因式中也会用到,在我们的配方解方程中也是作为基础知识点出现的,所以很重要。
三、学情分析从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出。
四、教学策略选择与设计现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。
根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
平方差公式教案平方差公式是指两个数的平方差可以通过将两个数的平方相减得到。
平方差公式可以用于解决一些数学问题,尤其是在代数运算中经常会用到。
教学目标:1. 理解平方差公式的定义和原理;2. 能够应用平方差公式解决简单的数学问题;3. 培养学生运用公式进行数学推导和证明的能力。
教学准备:1. 教师准备相关的练习题和问题,以便学生能够巩固和应用所学;2. 准备黑板或白板,以便教师可以在上面进行讲解和演示;3. 准备相关的教学工具,如尺子、平方纸等。
教学过程:1. 介绍平方差公式的定义和原理,例如可以说:“平方差公式是指两个数的平方差可以通过将两个数的平方相减得到,即a²- b² = (a + b)(a - b)。
”2. 讲解平方差公式的应用,例如可以给出一些实际的例子,如计算一个正方形和一个长方形的面积差、计算一个立方体和一个长方体的体积差等。
3. 运用平方差公式解决一些简单的数学问题,并让学生进行计算和验证。
4. 引导学生自己发现平方差公式的规律,并进行总结和归纳,例如可以问学生:“你们发现了什么规律?为什么两个数的平方相减可以通过(a + b)(a - b)来表示?”5. 练习和巩固:给学生分发相关的练习题,让学生进行练习和巩固所学的知识。
教师可以根据学生的情况给予指导和帮助。
6. 拓展应用:给学生一些拓展应用的问题,让他们运用平方差公式解决更复杂的数学问题。
例如可以问学生:“如果有一个长方形的面积是16,另一个长方形的面积是9,这两个长方形的边长之差是多少?”7. 教师进行总结和回顾,让学生回答一些问题,总结所学的知识点,加深对平方差公式的理解。
教学拓展:1. 引导学生进行数学推导和证明,例如可以要求学生证明平方差公式的正确性。
2. 扩大应用,让学生运用平方差公式解决更多的数学问题,并进行探索和发现。
例如可以要求学生计算一个正方体和一个长方体的体积差,或是一个圆和一个椭圆的面积差等。
尊敬的各位评委、老师大家好!我是来自六台中心学校的数学老师刘超。
今天我说课题目是华师大版八年级(上)册第12章第3节第二课时:两数和(差)的平方,主要内容是公式的推导及应用,下面我就从几个方面来介绍这堂课的说课内容:一、说教材1 教材分析:本节课是学生已经掌握乘法公式中的两数和乘以这两数的差之后进行学习的。
不仅是学习幂的运算、单项式乘法、多项式乘法知识的应用,是对多项式乘法中出现的较为特殊的算式的又一种归纳、总结,渗透从一般到特殊的思想;也是今后学习因式分解、解一元二次方程、配方法、分式运算知识的基础,不但可以提高学生运算速度和准确率,更起到了承上启下的作用,它也是用推理的形式进行恒等变形的又一次训练,因而它是本章的一个重点内容,通过乘法公式的学习可以简化某些整式的运算、培养学生的求简意识及简便方法巧算的意识。
2 教材处理:(1)教材中的多项式乘法导入枯燥乏味,降低学生学习兴趣,故换成从现实生活的数学情境出发,更体现数学源于生活,又服务于生活。
(2)补充了两数和(差)的平方公式又称作完全平方公式,使学生对此有个简单了解,为今后学习打下基础。
(3)例题稍作改动,从其心里上促使认真听课的态度。
3 重点难点:义务教育阶段的数学课程应以培养学生的能力,尤其是创新、创造能力为重,其基本出发点是促进学生全面、持续、和谐地发展。
参照义务教育阶段《数学课程标准》的要求,确定本节课的教学重难点如下:重点:经历公式的推导和发现,掌握公式的结构特征,学会运用公式进行简单的计算,体会公式的便捷性。
难点:公式的应用以及广泛意义上理解公式中字母a、b的含义,并会判断要计算的代数式是哪两个数的和(或差)的平方。
4教学目标:义务教育阶段的数学课程标准的基本精神和理念,努力落实基础知识、基本技能、基本思想与基本活动经验,培养学生发现问题、提出问题、分析问题与解决问题的能力,其基本出发点是促进学生全面、持续、和谐地发展。
根据以上指导思想,同时参照义务教育阶段《数学课程标准》严格控制要求与难度,确定本节课的教学目标如下:知识技能目标:(1)了解公式的几何背景,理解并掌握公式的结构特征。
两数和(差)的平方
【学习目标】:
理解两数和的平方的公式,掌握公式的结构特征。
熟练地应用公式进行计算。
【学习重点】:推导和运用两数和(差)的平方公式。
【学习难点】:公式的结构特征;公式中各字母既可以是有理数,也可以是单项式、多项式。
【学习过程】:
一、回顾:
1.平方差的公式是什么?应用平方差的公式计算时应注意什么?
2.平方差公式的几何背景:(书第31页)
3.计算:(1)(x+y)(x-y)(2)(a-b)(-a-b)(3)(x+2y)(x-2y)(x 2+4y 2
) 二、新课探究:
1.计算下列各式,仔细观察,发现什么?
(1)(a+b )2(2)(x+3)2(3)(3a +1)
2 不计算,直接写出下式的结果:(y+5)2=
概括:两数和的平方公式:两数和的平方,等于,用字母表示为
2.两数和的平方公式的几何背景:(书第33页)
先观察图12.3.2,再用等式表示下图中图形面积的运算:
图12.3.2=++.
212
1
3.露一手:
计算:(1)(x +3);(2)(2x +y ).
(3)(2a +3b );(4)(2a +b ) 4.例题学习:计算:(1)(a -b )由此可以得出两数差的平方的计算公式
=-+
能从图12.3.3中的面积关系来解释小题(1)的结果吗?
(2)(m-2)2
(3)(2x -3y )
三、用心做一做:
1.计算:
(1)(2)(3)(2x+3)(4)(2m -n )
2.计算:(说说怎样算更简便?)
(1)(-2m +n );(2)(-2m -n )(3)1002
3.要给一边长为a 米的正方形桌子铺上正方形的桌布,桌布的四周均超出桌面0.1米,问需要多大面积的桌布?
4.(1)a +b =(a+b )+;
(2)a +b =(a -b )+;
(3)(x +y )=(x -y )+
(4)(x -y )=(x +y )+
(5)(x +y )-(x -y )= 2222
12
22()23x -()23b a +22222222222222222
(6)(x-y )-(x+y )=
四、本课小结:
本节课你学到什么知识?还有哪些疑惑?
五、当堂小测:
1.填空:
(1)a +6a +=(a +);
(2)4x -20x +=(2x -);
(3)x 2++4=()2
2.计算
(1)(3a +b )(2)(2a +1)(-2a -1)
(3)(2x -4y )(4)(a -b ) 六、课外延伸:
(一)填空:
1.(1)=.(2)若x +mx +4是一个完全平方公式,则m 的值 (3)若x +4x +m 2是一个完全平方公式,则m 的值
2.x +y =(x+y )-=(x -y )+.
3.m +=(m +)-.
4.若x -y =3,x ·y =10.则x +y =.
5.已知(a+b )2=7,(a-b )2=4,求(1)a 2+b 2
(2)ab 的值。
(二)选择:
5.下列各式计算正确的是() 22222222213121
10199100+⨯222222221m m
1222
A.(a +b +c )=a +b +c B.(a +b -c )=a +b -c C.(a +b -c )=(-a -b +c )D.(a +b -c )=(a -b +c )
6.要使x -6x +a 成为形如(x -b )的完全平方式,则a ,b 的值() A.a =9,b =-3B.a =9,b =3C.a =3,b =3D.a =-3,b =-2
7.一个长方形的面积为x -y ,以它的长边为边长的正方形的面积为() A.x +y B.x +y -2xy C.x +y +2xy D.以上都不对
(三)利用乘法公式计算:
1.998
2.(a +b +c )(a +b -c )3.(2a +1)-(1-2a )
(四)先化简,再求值:
(1)(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1
(2)已知x 2-2x=1,求(x-1)(3x+1)-(x+1)2的值。
2222222222222222222222222。