专题:数列试题1[学生版]
- 格式:doc
- 大小:172.00 KB
- 文档页数:12
数列中的奇偶项问题一、真题剖析【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=_____ ________二、题型选讲题型一、分段函数的奇偶项求和例1.(2022·南京9月学情【零模】)(本小题满分10分)已知正项等比数列{a n}的前n项和为S n,S3= 7a1,且a1,a2+2,a3成等差数列.(1)求{a n}的通项公式;(2)若b n=a n,n为奇数,n,n为偶数,求数列{bn}的前2n项和T2n.变式1.(2022·江苏南京市金陵中学高三10月月考)已知等差数列{a n}前n项和为S n(n∈N+),数列{b n}是等比数列,a1=3,b1=1,b2+S2=10,a5-2b2=a3.(1)求数列{a n}和{b n}的通项公式;(2)若c n=2S n,n为奇数b n,n为偶数,设数列{c n}的前n项和为T n,求T2n.变式2.(2022·山东·潍坊一中模拟预测)已知数列a n 满足a 12+a 222+⋅⋅⋅+a n 2n =n2n .(1)求数列a n 的通项公式;(2)对任意的n ∈N ∗,令b n =2-n ,n 为奇数22-n ,为偶数,求数列b n 的前n 项和S n .变式3.(2022·湖南省雅礼中学开学考试)(10分)已知数列{a n }满足n 2a n +12+12,为正奇数,2a n 2+n 2,n 为正偶数.(1)问数列{a n }是否为等差数列或等比数列?说明理由.(2)求证:数列a 2n2n是等差数列,并求数列{a 2n}的通项公式.题型二、含有(-1)n类型例2.【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.变式1.【2022·广东省深圳市育才中学10月月考】已知数列a n的前n项和为S n,且对任意正整数n,a n =34S n+2成立.(1)b n=log2a n,求数列b n的通项公式;(2)设c n=-1n+1n+1b n b n+1,求数列c n的前n项和T n.变式2.(2021·山东济宁市·高三二模)已知数列a n 是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列a n 的通项公式;(2)若b n =-1 n 2a 2n +1log ,求数列b n 的前n 项和T n .变式3.(2022·湖北·黄冈中学二模)已知数列a n 中,a 1=2,n a n +1-a n =a n +1.(1)求证:数列a n +1n是常数数列;(2)令b n =(-1)n a n ,S n 为数列b n 的前n 项和,求使得S n ≤-99的n 的最小值.题型三、a n+a n+1类型例3.(2022·湖北省鄂州高中高三期末)已知数列a n前n项和为满足a1=1,a n+a n+1=2n;数列b n S n,且b1=1,2S n=b n+1-1.(1)求数列a n的通项公式;和数列b n(2)设c n=a n⋅b n,求c n前2n项和T2n.变式1.(2022·江苏苏州·高三期末)若数列a n满足a n+m=a n+d(m∈N*,d是不等于0的常数)对任意n∈N*恒成立,则称a n中,是周期为m,周期公差为d的“类周期等差数列”.已知在数列a n a1=1,a n+a n+1=4n+1(n∈N*).(1)求证:a n是周期为2的“类周期等差数列”,并求a2,a2022的值;(2)若数列b n的前n项和T n.满足b n=a n+1-a n(n∈N*),求b n变式2.(2022·江苏新高考基地学校第一次大联考期中)(10分)已知等差数列{a n}满足a n+a n+1= 4n,n∈N*.(1)求{a n}的通项公式;(2)设b1=1,b n+1=a n,n为奇数,-b n+2n,n为偶数,求数列{bn}的前2n项和S2n.三、追踪训练1.(2022·江苏苏州市八校联盟第一次适应性检测)若数列{a n}中不超过f(m)的项数恰为b m(m∈N*),则称数列{b m}是数列{a n}的生成数列,称相应的函数f(m)是数列{a n}生成{b m}的控制函数.已知a n=2n,且f(m)=m,数列{b m}的前m项和S m,若S m=30,则m的值为()A.9B.11C.12D.142.【2022·广东省深圳市第七高级中学10月月考】(多选题)已知数列a n满足a n+1+a n=n⋅-1 n n+12,其前n项和为S n,且m+S2019=-1009,则下列说法正确的是()A.m为定值B.m+a1为定值C.S2019-a1为定值D.ma1有最大值3.(2022·江苏南通市区期中)(多选题)已知数列{a n}满足a1=-2,a2=2,a n+2-2a n=1-(-1)n,则A.{a2n-1}是等比数列B.5i=1a2i−1+2=-10C.{a2n}是等比数列D.10i=1a i=524.(2022·江苏海门中学、泗阳中学期中联考)已知数列{a n}满足a n+1+(-1)n a n=2n+1,则a1+a3+ a5+⋯+a99=.5.(2021·天津红桥区·高三一模)已知数列a n 的前n 项和S n 满足:S n =2a n +(-1)n ,n ≥1.(1)求数列a n 的前3项a 1,a 2,a 3;(2)求证:数列a n +23⋅-1 n 是等比数列:(3)求数列(6n -3)⋅a n 的前n 项和T n .6.(2022·山东烟台·高三期末)已知数列a n 满足a 1=4,a n +1=12a n+n ,n =2k -1a n -2n ,n =2k(k ∈N *).(1)记b n =a 2n -2,证明:数列b n 为等比数列,并求b n 的通项公式;(2)求数列a n 的前2n 项和S 2n .。
小学六年级数列的认识练习题一、填空题1. 如果一个数列的公差是2,首项是3,那么数列的第8项是多少?2. 已知一个等差数列的首项是5,公差是3,求第10项的值。
3. 若一个数列的首项是2,末项是8,公差是2,数列中共有几项?4. 一个数列的首项是5,第7项是19,求这个数列的公差。
5. 若一个等差数列的第3项是7,第7项是19,求此数列的公差和首项。
二、选择题1. 以下哪一个数列不是等差数列?A. 2, 5, 8, 11, 14B. 3, 6, 9, 12, 16C. 4, 8, 16, 32, 64D. 1, 4, 9, 16, 252. 一个等差数列的首项是3,差是4,求第5项的值是多少?A. 11B. 15C. 19D. 233. 以下哪一个数列的公差是2?A. 1, 4, 7, 10B. 10, 8, 6, 4C. 2, 4, 6, 8D. 3, 6, 12, 24三、解答题1. 若一个等差数列的第1项是2,最后一项是20,公差是3,求此数列共有几项和所有项的和。
2. 以下数列是等差数列还是等比数列?A. 1, 2, 4, 8, 16B. 3, 6, 9, 12, 15C. 2, 4, 8, 16, 32D. 1, 3, 9, 27, 81四、应用题某学校的篮球队开始每天训练,第一天训练15分钟,第二天20分钟,第三天25分钟,以此类推。
假设每天的训练时间都比前一天多5分钟,请回答以下问题:1. 这个数列的首项和公差分别是多少?2. 第7天的训练时间是多少分钟?3. 训练到第30天,累计训练时间是多少分钟?这份练习题旨在让学生巩固对小学六年级数列的认识和计算能力,并提供一定的长度和深度。
每个小节都有具体的题目要求,学生需要根据已学知识进行计算和分析。
同时,试题内容和结构符合试卷或习题格式,以满足教学需求。
数列测试题及答案一、选择题1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,那么a_5的值为:A. 15B. 31C. 63D. 127答案:B2. 数列{a_n}是等差数列,公差为3,且a_3=12,则a_1的值为:A. 3B. 6C. 9D. 12答案:B3. 已知数列{a_n}满足a_1=2,a_{n+1}=3a_n,那么数列的通项公式为:A. a_n = 2 * 3^{n-1}B. a_n = 2 * 3^nC. a_n = 3 * 2^{n-1}D. a_n = 3^n答案:B二、填空题4. 已知数列{a_n}的前n项和S_n=n^2,求a_3的值。
答案:65. 数列{a_n}是等比数列,首项为2,公比为4,求a_5的值。
答案:128三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n,求数列的前5项。
答案:a_1 = 1a_2 = a_1 + 1 = 2a_3 = a_2 + 2 = 4a_4 = a_3 + 3 = 7a_5 = a_4 + 4 = 117. 已知数列{a_n}是等差数列,且a_1=5,a_4=14,求数列的通项公式。
答案:a_n = 5 + (n-1) * 3 = 3n + 28. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求数列的前5项。
答案:a_1 = 2a_2 = 2a_1 + 1 = 5a_3 = 2a_2 + 1 = 11a_4 = 2a_3 + 1 = 23a_5 = 2a_4 + 1 = 479. 已知数列{a_n}是等比数列,首项为3,公比为2,求数列的前5项。
答案:a_1 = 3a_2 = 3 * 2 = 6a_3 = 6 * 2 = 12a_4 = 12 * 2 = 24a_5 = 24 * 2 = 4810. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n-2,求数列的前5项。
等差数列㈠求等差数列的通项公式1、已知数列{a n }为等差数列,且a 5=11,a 8=5,则a n =__________.2、已知{a n }是等差数列,a 5=10,d =3,求a 10.3、已知{a n }是等差数列,a 5=10,a 12=31,求a 20,a n .4、等差数列2,5,8,…,107共有多少项?5、在-1与7之间顺次插入三个数a 、b 、c 使这五个数成等差数列,试求出这个数列.6、成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.7、设数列{a n }是等差数列,a p =q,a q =p(p ≠q),求a p+q .8、两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?㈡等差数列的判断1、已知数列{a n }的通项公式为a n =pn+q,其中p 、q 为常数,且p≠0,问这个数列一定是等差数列吗?2、数列{a n }的通项公式a n =2n+5,则此数列( )A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n 的等差数列 3、在数列{a n }中,a 1=2,2a n+1=2a n +1则a 101的值为( ) A.49 B.50 C.51 D.52㈢等差数列的性质1、等差数列{a n }中,若a 1+a 2+a 3=3,a 4+a 5+a 6=9,则a 10+a 11+a 12=______________.2、等差数列{a n }中,已知a 2+a 3+a 10+a 11=36,则a 5+a 8=___________________.3、已知等差数列{a n }中,a 5+a 6+a 7=15,a 5·a 6·a 7=45,求数列{a n }的通项公式.4、设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-375、已知方程(x 2-2x+m)(x 2-2x+n)=0的四个根组成一个首项为41的等差数列,则|m-n|的值为 A.1B.43C.21D.83㈣等差数列的前n 项和1、求下列数列的和(1)1+2+3+…+n ; (2)1+3+5+…+(2n -1);(3)2+4+6+…+2n ; (4)1-2+3-4+5-6+…+(2n -1)-2n .2、已知一个等差数列{}n a 前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n 项和的公式吗?3、已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?4、在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.90 B.100 C.180 D.2005、如果一个等差数列中,S 10=100,S 100=10,则S 110=( ) A .90 B.-90 C.110 .D -1106、在等差数列{a n }中,S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值是( )A.7B.8C.9D.10 7、若一个等差数列前3项和为34,最后3项和为146,且所有项和为390,则这个数列的项数是 ( ) A .13 B .12 C .11 D .10 8、在等差数列{}n a 中,a 2+a 5=19,S 5=40,则a 10为( )A .27 B.28 C.29 D.309、已知一个等差数列的前四项和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A.24 B.26 C.27 D.2810、已知等差数列{a n }的通项公式为a n =2n+1,其前n 项和为S n ,则该数列{nS n }的前10项的和为( )A.120B.70C.75D.100 11、在等差数列中,154567405S S =-=,,则30S =( )A.68 B.189 C.78 D.12912、等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A .130 B .170 C .210 D .26013、等差数列的前m 项和是25,前2m 项和是100,则前3m 项和是 。
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.292(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.23(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.7(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.2662(2024·河北张家口·三模)已知数列a n 的前n 项和为S n ,且满足a 1=1,a n +1=a n +1,n 为奇数2a n ,n 为偶数 ,则S 100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-1033(2024·山东日照·三模)设等差数列b n 的前n 项和为S n ,若b 3=2,b 7=6,则S 9=()A.-36B.36C.-18D.184(2024·湖北武汉·二模)已知等差数列a n 的前n 项和为S n ,若S 3=9,S 9=81,则S 12=()A.288B.144C.96D.255(2024·江西赣州·二模)在等差数列a n 中,a 2,a 5是方程x 2-8x +m =0的两根,则a n 的前6项和为()A.48B.24C.12D.86(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.647(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <1008(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.129(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.8810(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列11(2024·广东茂名·一模)已知T n 为正项数列a n 的前n 项的乘积,且a 1=2,T 2n =a n +1n ,则a 5=()A.16B.32C.64D.12812(2024·湖南常德·一模)已知等比数列a n 中,a 3⋅a 10=1,a 6=2,则公比q 为()A.12B.2C.14D.4二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p14(2024·山东泰安·模拟预测)已知数列a n的通项公式为a n=92n-7n∈N*,前n项和为S n,则下列说法正确的是()A.数列a n有最大项a4 B.使a n∈Z的项共有4项C.满足a n a n+1a n+2<0的n值共有2个D.使S n取得最小值的n值为415(2024·山东临沂·二模)已知a n是等差数列,S n是其前n项和,则下列命题为真命题的是() A.若a3+a4=9,a7+a8=18,则a1+a2=5 B.若a2+a13=4,则S14=28C.若S15<0,则S7>S8D.若a n和a n⋅a n+1都为递增数列,则a n>0 16(2024·山东泰安·二模)已知等差数列a n的前n项和为S n,a2=4,S7=42,则下列说法正确的是()A.a 5=4B.S n=12n2+52nC.a nn为递减数列 D.1a n a n+1的前5项和为421 17(2024·江西·三模)已知数列a n满足a1=1,a n+1=2a n+1,则()A.数列a n是等比数列 B.数列log2a n+1是等差数列C.数列a n的前n项和为2n+1-n-2 D.a20能被3整除18(2024·湖北·二模)无穷等比数列a n的首项为a1公比为q,下列条件能使a n既有最大值,又有最小值的有()A.a1>0,0<q<1B.a1>0,-1<q<0C.a1<0,q=-1D.a1<0,q<-1三、填空题19(2024·山东济南·三模)数列a n满足a n+2-a n=2,若a1=1,a4=4,则数列a n的前20项的和为.20(2024·云南·二模)记数列a n的前n项和为S n,若a1=2,2a n+1-3a n=2n,则a82+S8=.21(2024·上海·三模)数列a n满足a n+1=2a n(n为正整数),且a2与a4的等差中项是5,则首项a1= 22(2024·河南·三模)数列a n满足a n+1=e a n-2n∈N*,a2+a3=3x0,其中x0为函数y=e x-2-x2(x> 1)的极值点,则a1+a2-a3=.23(2024·上海·三模)已知两个等差数列2,6,10,⋯,202和2,8,14,⋯,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为.24(2024·湖南长沙·三模)已知数列a n 为正项等比数列,且a 2-a 3=3,则a 1的最小值为.四、解答题25(2024·黑龙江·三模)已知等差数列a n 的公差d >0,a 2与a 8的等差中项为5,且a 4a 6=24.(1)求数列a n 的通项公式;(2)设b n =a n ,n 为奇数,1a n an +2,n 为偶数,求数列b n 的前20项和T 20.26(2024·湖南长沙·三模)若各项均为正数的数列c n 满足c n c n +2-c 2n +1=kc n c n +1(n ∈N *,k 为常数),则称c n 为“比差等数列”.已知a n 为“比差等数列”,且a 1=58,a 2=1516,3a 4=2a 5.(1)求a n 的通项公式;(2)设b n =a n ,n 为奇数b n -1+1,n 为偶数,求数列b n 的前n 项和S n .27(2024·山东潍坊·三模)已知正项等差数列a n的公差为2,前n项和为S n,且S1+1,S2,S3+1成等比数列.(1)求数列a n的通项公式a n;(2)若b n=1S n,n为奇数,S n⋅sin n-1π2,n为偶数,求数列b n 的前4n项和.28(2024·上海·三模)已知等比数列a n的公比q>0,且a3+a1a5=6,a6=16.(1)求a n的通项公式;(2)若数列b n满足b n=λ⋅3n-a n,且b n是严格增数列,求实数λ的取值范围.29(2024·山东泰安·模拟预测)在足球比赛中,有时需通过点球决定胜负.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将(也称为守门员)也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有23的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为p n,易知p1=1,p2=0.① 试证明:p n-1 3为等比数列;② 设第n次传球之前球在乙脚下的概率为q n,比较p2024与q2024的大小.30(2024·湖南邵阳·三模)高中教材必修第二册选学内容中指出:设复数z=a+bi对应复平面内的点Z,设∠XOZ=θ,OZ=r,则任何一个复数z=a+bi都可以表示成:z=r cosθ+i sinθ的形式,这种形式叫做复数三角形式,其中r是复数z的模,θ称为复数z的辐角,若0≤θ<2π,则θ称为复数z的辐角主值,记为argz.复数有以下三角形式的运算法则:若z i=r i cosθi+i sinθi,i=1,2,⋯n,则:z1⋅z2⋅⋯⋅z n=r1r2⋯r n cosθ1+θ2+⋯+θn+i sinθ1+θ2+⋯+θn,特别地,如果z1=z2=⋯z n=r cosθ+i sinθ,那么r cosθ+i sinθn=r n cos nθ+i sin nθ,这个结论叫做棣莫弗定理.请运用上述知识和结论解答下面的问题:(1)求复数z=1+cosθ+i sinθ,θ∈π,2π的模z 和辐角主值argz(用θ表示);(2)设n≤2024,n∈N,若存在θ∈R满足sinθ+i cosθn=sin nθ+i cos nθ,那么这样的n有多少个?(3)求和:S=cos20°+2cos40°+3cos60°+⋯+2034cos2034×20°31(2024·湖南长沙·二模)集合论在离散数学中有着非常重要的地位.对于非空集合A 和B ,定义和集A +B =a +b a ∈A ,b ∈B ,用符号d (A +B )表示和集A +B 内的元素个数.(1)已知集合A =1,3,5 ,B =1,2,6 ,C =1,2,6,x ,若A +B =A +C ,求x 的值;(2)记集合A n =1,2,⋯,n ,B n =2,22,⋯,n 2 ,C n =A n +B n ,a n 为C n 中所有元素之和,n ∈N *,求证:1a 1+2a 2+⋯+n a n <2(2-1);(3)若A 与B 都是由m m ≥3,m ∈N * 个整数构成的集合,且d (A +B )=2m -1,证明:若按一定顺序排列,集合A 与B 中的元素是两个公差相等的等差数列.32(2024·山东泰安·模拟预测)已知数列a n 是斐波那契数列,其数值为:1,1,2,3,5,8,13,21,34⋅⋅⋅⋅⋅⋅.这一数列以如下递推的方法定义:a 1=1,a 2=1,a n +2=a n +1+a n (n ∈N *).数列b n 对于确定的正整数k ,若存在正整数n 使得b k +n =b k +b n 成立,则称数列b n 为“k 阶可分拆数列”.(1)已知数列c n 满足c n =ma n (n ∈N *,m ∈R ).判断是否对∀m ∈R ,总存在确定的正整数k ,使得数列c n 为“k 阶可分拆数列”,并说明理由.(2)设数列{d n }的前n 项和为S n =3n -a a ≥0 ,(i )若数列{d n }为“1阶可分拆数列”,求出符合条件的实数a 的值;(ii )在(i )问的前提下,若数列f n 满足f n =an S n,n ∈N *,其前n 项和为T n .证明:当n ∈N *且n ≥3时,T n <a 21+a 22+a 23+⋅⋅⋅⋅⋅⋅+a 2n -a n a n +1+1成立.。
数列找规律学生姓名授课日期教师姓名授课时长知识定位知识梳理例题讲解【试题来源】【题目】下面每列数都有什么规律呢?你能找到并继续往下填吗?⑴ 1,3,5,7,( ),()。
⑴ 2,4,6,8,(),()。
⑴ 1,4,7,10,(),()。
⑴ 35,30,25,20,(),( )。
【试题来源】【题目】你知道下面数列的规律吗?请继续往下写。
⑴1,3,9,(),()。
⑵1,10,100,1000,(),()。
⑶64,32,16,8,(),()。
【试题来源】【题目】有一个人养了一对刚出生的小兔子,一般而言,一对兔子如果第一个月出生,第二个月长大,第三个月就能生一对小兔子,以后每个月都能生出一对小兔子。
而新生的一对小兔子经过一个月可以长成大兔子,以后也是每月生一对小兔子。
假如所有兔子都不死,问:从一对小兔子出生经过一年的时间一共有多少对兔子?【试题来源】【题目】数列的变化非常多,下面的数列要我们多动脑筋才能找出来。
快来试一试吧!⑴5,7,10,14,( ),25,( )。
⑵100,81,64,49,36,25,( ),9,4,1 。
⑶1,2,6,24 , ( )。
⑷6,9,15,24,39,( ),( )。
【试题来源】【题目】下图的数是按一定规律排列的,请按规律填上所缺数。
习题演练【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、6、10、14、18、22、( )A.25B.28C.26D.21【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )1、2、4、8、16、( )A.30B.32C.15D.28【试题来源】【题目】有这样一列数:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,,你知道这个数列第13项是( )?A.198B.213C.250D.233【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、3、5、8、12、17、( )A.23B.22C.19D.25【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
等差数列测试题班级:_____________姓名:_____________得分:___________ 一选择题:(60分=5分×12)1.已知{}n a 为等差数列,135********,99,a a a a a a a ++=++=则等于( ) A. -1 B. 1 C. 3 D. 72.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B. 53 C.- 2 D. 34.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( ) A.-2 B. 12- C. 12D.25.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A.12 B.13 C.14 D.156.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15 B .30 C .31 D .647.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .1208.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( )A .16B .24C .36D .489.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27 10.设n S 是等差数列{}n a 的前n 项和,若36612S 1,3S S S ==则( )A.310B.13C.18D.1911、等差数列{}n a 中,39||||,a a =公差d<0,则使前项n 和n S 取得最大值的自然数n 的值是( )A.4和5B.5和6C.6和7D.不存在12、含2n+1项的等差数列,其奇数项的和与偶数项的和之比为( ) A.21n n+ B.1n n+ C.1n n- D.12n n+一、选择题答题卡:1 2 3 4 5 6 7 8 9 10 11 12二、填空题(20分=5分×4)13.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= 14. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 15.设等差数列{}n a 的前n 项和为n S ,若535a a =,则95S S =16.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 三、解答题(70分=10分+5×12分,22,23大题任选一题作答) 17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .18.已知等差数列{n a }中,374616,0a a a a ⋅=-+=,求{n a }前n 项和n S .19、求数列{}n a 的前n 项和n S ,其中1(2)na n n =+20、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.21、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求: (1)}{n a 的通项公式a n 及前n项的和n S ; (2)12314...a a a a ++++*22、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.*23.若两个数列的前n 项和之比是(71):(427)n n ++,试求它们的第11项之比,第n 项之比。
数列测试题及答案解析一、单项选择题(每题3分,共30分)1. 数列{an}是等差数列,且a1=2,公差d=3,则a5的值为:A. 11B. 14C. 17D. 20答案:B2. 下列数列中,不是等比数列的是:A. 1, 2, 4, 8, ...B. 2, 4, 8, 16, ...C. 1, 1/2, 1/4, 1/8, ...D. 3, 6, 12, 24, ...答案:D3. 数列{bn}的通项公式为bn=2n-1,该数列的前n项和Sn为:A. n^2B. n^2 - 1C. 2^(n+1) - 1D. 2^(n+1) - 2答案:C4. 等差数列{an}中,若a2+a4=10,则a3的值为:A. 2B. 3C. 4D. 5答案:C5. 数列{cn}的前n项和为Tn,若Tn=n^2+n,则c1+c2+c3+...+c10的值为:A. 100B. 110C. 120D. 130答案:B6. 数列{dn}的前n项和为Sn,若Sn=n^2-n,则dn的通项公式为:A. 2n-1B. 2nC. n-1D. n答案:C7. 数列{en}中,e1=1,e2=2,且对于任意的n∈N*,有en+1/en=n+1,则e3的值为:A. 3B. 4C. 5D. 6答案:A8. 数列{fn}是等比数列,且f1=1,f3=8,则f2的值为:A. 2B. 4C. 8D. 16答案:B9. 数列{gn}中,g1=1,g2=3,且对于任意的n∈N*,有gn+1=2gn+1,则g3的值为:A. 7B. 9C. 11D. 13答案:A10. 数列{hn}的前n项和为Tn,若Tn=2^n-1,则hn的通项公式为:A. 2^(n-1)B. 2^nC. 2^(n-1) - 1D. 2^n - 1答案:A二、填空题(每题4分,共20分)11. 等差数列{an}中,若a1=3,d=2,则a10=________。
答案:1512. 数列{bn}的前n项和为Tn,若Tn=n^2+2n,则bn的通项公式为bn=________。
高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
四类数列题型-高考数学大题秒杀技巧数列求和问题一般分为四类:类型1:错位相减;类型2:裂项相消求和;类型3:分组求和;类型4:含−1 n 类进行求和 。
下面给大家对每一个类型进行秒杀处理.数列求和之前需要掌握一些求数列通项的技巧,技巧如下:①当高考数列大题出现《a n 与a n +1》或《a n 与a n −1》递推关系且关系式中系数为1时,应遵循以下步骤第一步:作差第二步:列举第三步:求和→简称《知差求和》注意:列举时最后一项必须是a n −a n −1②当高考数列大题出现《a n 与a n +1》或《a n 与a n −1》递推关系且关系式中系数不为1时,应遵循以下步骤第一步:秒求所配系数第二步:寻找新的等比数列第三步:求新数列的通项第四步反解a n →简称《构造法》③当高考数列大题出现《a n 与a n +1》或《a n 与a n −1》递推关系,关系式中出现倍数关系时,应分为两种情况,第一种情况:若f n 是常数时,可归为等比数列,第二种情况:若f n 可求积,应遵循以下步骤第一步:出现商的形式第二步:列举第三步:求积出现a n →简称《知商求积》类型1:错位相减;a n =An +B ⋅C n第一步:求和(求和×公比)S n =A +B ⋅C 1+A ⋅2+B ⋅C 2+A ⋅3+B ⋅C 3+⋯⋯+A ⋅n −1 +B ⋅C n −1+A ⋅n +B ⋅C n C ⋅S n =A +B ⋅C 2+A ⋅2+B ⋅C 3+A ⋅3+B ⋅C 4+⋯⋯+A ⋅n −1 +B ⋅C n +A ⋅n +B ⋅C n +1①式-②式得S n −C ⋅S n =A +B ⋅C 1+A ⋅C 2+A ⋅C 3+⋯⋯+A ⋅C n −A ⋅n +B ⋅C n +1S n 1−C =A ⋅C 1+A ⋅C 2+A ⋅C 3+⋯⋯+A ⋅C n +B ⋅C 1−A ⋅n +B ⋅C n +1S n =A ⋅C ⋅1−C n1−C +B ⋅C 1−A ⋅n +B ⋅C n +11−CS n =A ⋅C ⋅1−C n 1−C 2+B ⋅C 11−C −A ⋅n +B ⋅C n +11−C ⇒S n =AC −C n +1C −12−B ⋅C 1C −1+A ⋅n +B ⋅C n +1C −1S n =An C −1+B C −1−A C −1 2 ⋅C n +1−B C −1−A C −1 2⋅C错位相减专项训练1已知等差数列a n前n项和为S n,a1=1,S9=9a6-18.(1)求a n的通项公式;(2)若数列b n满足a1b1+a2b2+⋯+a n b n=2n-3⋅2n+1+6,求和:T n=a1b n+a2b n-1+⋯+a n-1b2+a n b1.2数列a n中,a1=2,记T n=a1a2a3⋯a n,T n是公差为1的等差数列.(1)求a n的通项公式;(2)令b n=na n2n,求数列b n的前n项和S n.3已知数列a n满足a1=-1,且2a n+1-a n=1 2n.(1)求2n⋅a n的通项公式;(2)求数列a n的前n项和S n.4已知数列a n的前n项和为S n,a1=0,且S n+1=2S n+2n∈N*.(1)求数列a n的通项公式;(2)设数列b n满足b n=log2a n+12,求a n+1b n的前n项和T n.5已知等差数列a n的公差不为零,其前n项和为S n,且a2是a1和a5的等比中项,a2n=2a n +1n∈N*.(1)求数列a n的通项公式;(2)若b n=2a n+1,令c n=a n b n,求数列c n的前n项和T n.类型2:裂项相消求和①a n=f(n+1)−f(n)②sin1°cos n°cos(n+1)°=tan(n+1)°−tan n°③a n=1n(n+1)=1n−1n+1④a n=(2n)2(2n−1)(2n+1)=1+1212n−1−12n+1⑤a n=1n(n−1)(n+2)=121n(n+1)−1(n+1)(n+2)⑥a n=n+2n(n+1)⋅12n=2(n+1)−nn(n+1)⋅12n=1n⋅2n−1−1(n+1)2n,则S n=1−1(n+1)2n⑦a n=1(An+B)(An+C)=1C−B1An+B−1An+C⑧a n=1n+n+1=n+1-n,1a+b=1a-ba-b⑨a n=log a n+1n=log a n+1−log a n⑩a n=2n2n−1⋅2n+1−1=12n−1−12n+1−1裂项相消求和专项训练6已知在等差数列a n 中,a 1+a 5=18,a 6=15.(1)求a n 的通项公式;(2)求数列1a n -1a n 的前n 项和S n .7已知数列a n 的前n 项和为S n ,且满足a 1=12,a n +S n -1S n=0(n ≥2).(1)求数列a n 的通项公式;(2)求数列(2n +1)a 2n 的前n 项和.8已知公差不为0的等差数列a n 的前n 项和为S n ,且a 1,a 2,a 5成等比数列,a 2a 3=a 8.(1)求数列a n 的通项公式a n ;(2)若n ≥2,1S 2-1+1S 3-1+⋯+1S n -1≥2140,求满足条件的n 的最小值.9从①a n +1 2=a 2n -1+4a n +2a n -1+1n ≥2 ,a n >0,②na n +1=n +1 a n +1,③前n 项和S n 满足nS n +1S n+n=n +1中任选一个,补充在下面的横线上,再解答.已知数列a n 的首项a 1=1,且.(1)求a n 的通项公式;(2)若b n =2a n a n +1,求数列b n 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.10已知数列a n 满足a 1=13,2-a n a n +1=1.(1)证明:数列11-a n 是等差数列,并求数列a n 的通项公式;(2)设数列a n 的前n 项的积为T n ,证明:T 1T 2+T 2T 3+⋯+T n T n +1<12.类型3:分组求和①等差数列求和公式:S n=n(a1+a n)2=na1+n(n−1)2d②等比数列求和公式:S n=na1(q=1) a1(1−q n)1−q=a1−a n q1−q(q≠1)③S n=nk=1k=12n(n+1)④S n=nk=1k2=16n(n+1)(2n+1)⑤S n=nk=1k3=12n(n+1)]2类型3:分组求和专项训练11已知数列a n的前n项和为S n,a1=3,2S n=3a n-3.(1)求a n的通项公式;(2)设数列b n满足:b n=a n+log3a n,记b n的前n项和为T n,求T n.12已知数列a n满足:a1=3,a n=a n-1+2n-1n≥2,n∈N*.(1)求数列a n的通项公式;(2)令b n=a n-1+-1n log2a n-1,求数列b n的前n项和T n.13在等比数列a n中,a1,a2,a3分别是下表第一,第二,第三列中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一行.第一列第二列第三列第一行-1-416第二行2-6-10第三行5128(1)写出a1,a2,a3,并求数列a n的通项公式;(2)若数列b n的前n项和S n.满足b n=a n+log2a2n,求数列b n14已知数列a n的前n项和为S n,a1=1,S n+1=2S n+1n∈N+.(1)求数列a n的通项公式;(2)设b n=a n a n+1+log2a n a n+1的前n项和.,求数列b nn∈N+15已知数列a n的前n项和S n=n2+n2,等比数列b n满足b2=a2,b3=a3+1.(1)求数列a n和b n的通项公式;(2)若c n=-a n b n+1,n为奇数a nb n,n为偶数,求数列cn的前2n项和T2n.类型4:含−1n类进行求和我们估且把这种求和的方法称为“并项法”,可以推广到一般情况,用“并项法”求形如通项公式为a n=−1n⋅f n 的摆动数列{a n}前n项和的步骤如下:第一步:首先获得并项后的一个通项公式,即先求当n为奇数时,a n+a n+1的表达式;第二步:然后对n分奇、偶进行讨论,即当n为偶数时,由S n=a1+a2+a3+a4+a5+a6+⋯+a n−1+a n求出S n;第三步:当n为奇数且n>1时,由S n=S n−1+a n求出S n,特别注意对n=1时要单独讨论,即S1要单独求出.第四步:将S1代入当n为奇数且n>1时S n的表达式进行检验,如果适合,结果写成两段分段函数形式表示,如果不适合,结果写成三段分段函数形式表示含−1n类进行求和专项训练16设S n为数列a n的前n项和,a n>0,a2n+2a n+1=4S n.(1)求数列a n的通项公式;(2)求数列-1n4na n a n+1的前n项和Tn.17数列a n 的前n 项的和为S n ,已知a 1=1,a 2=3,当n ≥2时,S n +1+S n -1=2S n +n +1.(1)求数列a n 的通项公式a n ;(2)设b n =-1 n ⋅a n ,求b n 的前2m m ∈N ∗ 项和T 2m .18设正项数列a n 的前n 项和为S n ,已知a 3=5,且a 2n +1=4S n +4n +1.(1)求a n 的通项公式;(2)若b n =(-1)n ⋅2n a na n +1,求数列b n 的前n 项和T n .19正项数列a n 的前n 项和为S n ,已知2a n S n =a 2n +1.(1)求证:数列S 2n 为等差数列,并求出S n ,a n ;(2)若b n =(-1)na n,求数列b n 的前2023项和T 2023.20已知正项等比数列a n的前n项和为S n,且满足a1=1,a2a3a4=64,数列b n满足b1=1,b1+1 2 b2+1 3b3+⋅⋅⋅+1nb n=b n+1-1n∈N*.(1)求数列a n,b n的通项公式;(2)设c n=a n+(-1)n2b n+1,求数列c n的前2n项和T2n.。
专题 数列第1讲 数列的基本概念1.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-212.已知数列{a n }的前n 项和S n 满足S n =n 2+2n -1,则( ) A .a n =2n +1(n ∈N *) B .a n =2n -1(n ∈N *)C .a n =⎩⎪⎨⎪⎧ 2,(n =1),2n +1,(n ≥2,n ∈N *) D .a n =⎩⎪⎨⎪⎧2,(n =1),2n -1,(n ≥2,n ∈N *) 3.在数列{a n }中,已知a 1=1,且当n ≥2时,a 1a 2…a n =n 2,则a 3+a 5等于( ) A.73 B.6116 C.3115 D.1144.(2010年安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .645.(2011年江西)已知数列(a n )的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .556.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2014=________.7.我们可以利用数列{a n }的递推公式a n =2,n n n a n ⎧⎪⎨⎪⎩,为奇数时,为偶数时,(n ∈N *)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.8.(2011年浙江)若数列⎩⎨⎧⎭⎬⎫n (n +4)(23)n 中的最大项是第k 项,则k =__________.9.(2011年广东广州)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1),求{a n }的通项公式.第2讲等差数列1.(2011年重庆)在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.(2011届广东汕头)在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24 B.48 C.96 D.无法确定3.(2011年广东湛江测试)等差数列{a n}前17项和S17=51,则a5-a7+a9-a11+a13=()A.3 B.6 C.17 D.514.已知S n为等差数列{a n}的前n项和,若a1+a7+a13是一确定的常数,下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其结果为确定常数的是()A.②③⑤ B.①②⑤ C.②③④ D.③④⑤5.(2010年福建)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n 取最小值时,n等于()A.6 B.7 C.8 D.96.(2011年全国)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=()A.8 B.7 C.6 D.57.等差数列{a n},{b n}的前n项和分别为S n,T n.若S nT n=7n+14n+27(n∈N*),则a7b7=________.8.(2011年辽宁)S n为等差数列{a n}的前n项和,S2=S6,a4=1,则a5=______.9.(2011年福建)已知等差数列{a n}中,a1=1,a3=-3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k项和S k=-35,求k的值.10.已知S n为等差数列{a n}的前n项和,S n=12n-n2.求数列的通项公式。
第3讲 等比数列1.(2010年重庆)在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .82.(2011年广东调研)在等比数列{a n }中,已知a 1a 3a 11=8,那么a 2a 8=( ) A .16 B .12 C .6 D .43.设公差d ≠0的等差数列{a n }中,a 1,a 3,a 9成等比数列,则a 1+a 3+a 5a 2+a 4+a 6=( )A.75B.57C.34D.434.(2011年辽宁)若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8 D .165.(2010年浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-11 6.在等比数列{a n }中,a 5·a 11=3,a 3+a 13=4,则公比q 的个数有( ) A .1 B .2 C .3 D .47.(2011年天津)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .1108.(2011年北京)在等比数列{a n }中,a 1=12,a 4=-4,则公比q =__________;|a 1|+|a 2|+…+|a n |=__________.9.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .10.(2011年全国)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.第4讲 数列的求和1.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .1892.若等比数列的前n 项和是48,前2n 项和为60,则前3n 项的和为( )A .183B .108C .75D .633.设等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 8=15,则S 9=( )A .18B .36C .45D .604.(2011年皖北联考)数列1,1+2,…,1+2+22+…+2n -1的前n 项和为S n ,则S n 等于( )A .2nB .2n +1-n -2C .2n +1-n D .2n -n5.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是( )A .Π11B .Π10C .Π9D .Π86.(2011年安徽)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…a 10=( )A .15B .12C .-12D .-157.(2011年安徽百校论坛三模)在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.8.如图K9-4-1,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.1 2 2 3 4 3 4 7 7 4 5 11 14 11 5… 图K9-4-19.(2010年山东)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .10.(2011年“江南十校”联考)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫2n a n 是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .第5讲 利用几类经典的递推关系式求通项公式1.(2010年北京)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m =( )A .9B .10C .11D .122.已知S n 为等比数列{a n }的前n 项和,a 1=2,若数列{}1+a n 也是等比数列,则S n等于( )A .2nB .3nC .2n +1-2 D .3n -13.(2011年四川)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .114.(2010年福建)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.5.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则数列{a n }的通项a n =________.6.已知数列{a n }满足a 1=1,a n +1=a n3a n +1,则a n =__________________________________.7.已知数列{a n }满足a 1=2,a n +1=2a n -1,则a n =________. 8.已知数列{a n }中,a 1=1,a n +1=3a n +3n ,则a n =________.9.已知数列{a n }满足条件na n +1=(n +1)a n +2n 2+2n ,n ∈N *,a 1=1,设b n =a n +n . (1)求数列{b n }的通项公式;(2)求和:S =1b 2-2+1b 3-2+…+1b n -2.10.已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列;(2)求数列{a n }的前n 项和S n .专题三 数列的综合应用1.(2011年福建泰宁调研)已知等比数列{a n }中有a 3a 11=4a 7,数列{b n }是等差数列,且a 7=b 7,则b 5+b 9=( )A .2B .4C .8D .162.(2011年福建泰宁调研)已知数列{a n }的前n 项和为S n ,且S n =n -n 2,则a 4=( ) A .-6 B .-8 C .-12 D .-143.若数列{a n }是公比为4的等比数列,且a 1=2,则数列{log 2a n }是( ) A .公差为2的等差数列 B .公差为lg2的等差数列 C .公比为2的等比数列 D .公比为lg2的等比数列 4.一个四边形的四个内角成等差数列,最小角为40°,则最大角为( ) A .140° B .120° C .100° D .80°5.等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且S n T n =7n +45n -3,则使得a nb n为整数的正整数n 的个数是( )A .3B .4C .5D .66.数列{a n }中,a 1=1,a n ,a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前n 项和S n =( )A.12n +1B.1n +1C.n 2n +1D.n n +17.已知数列a n =⎩⎪⎨⎪⎧n -1 (n 为奇数),n (n 为偶数),则a 1+a 100=________,a 1+a 2+a 3+a 4+…+a 99+a 100=________.8.(2011年江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.9.(2011年广东茂名模拟)等差数列{a n }中a 1=3,前n 项和为S n ,等比数列{b n }各项均为正数,b 1=1,且b 2+S 2=12,{b n }的公比q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.11.已知数列{b n }前n 项和S n =32n 2-12n .数列{a n }满足a 3n =(2)4n b -+(n ∈N *),数列{c n }满足c n =a n b n .(1)求数列{a n }和数列{b n }的通项公式; (2)求数列{c n }的前n 项和T n ;(3)若c n ≤14m 2+m -1对一切正整数n 恒成立,求实数m 的取值范围.第1讲 数列的基本概念1.C 2.C 3.B 4.A 5.A 6.1 0 7.28 640 8.4 解析一:a n+1-a n =(n +1)(n +5)⎝⎛⎭⎫23n +1-n (n +4)⎝⎛⎭⎫23n=⎣⎡⎦⎤(n +1)(n +5)×23-n (n +4)⎝⎛⎭⎫23n=⎝⎛⎭⎫23n 2n 2+12n +10-3n 2-12n 3=⎝⎛⎭⎫23n 10-n 23.当n <3时,a n +1-a n >0,数列单调递增;当n ≥4时,a n +1-a n <0,数列单调递减.即a 1<a 2<a 3<a 4>a 5>a 6>…… 即第四项最大,k =4.解析二:设最大项为第k 项,则有⎩⎨⎧k (k +4)⎝⎛⎭⎫23k ≥(k +1)(k +5)⎝⎛⎭⎫23k +1,k (k +4)⎝⎛⎭⎫23k ≥(k -1)(k +3)⎝⎛⎭⎫23k -1,∴⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0⇒⎩⎨⎧k 2≥10,1-10≤k ≤1+10⇒k =4. 9.解:由a n +1=2S n +1可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. 10.解:因为a n +1-a n=(n +2)⎝⎛⎭⎫1011n +1-(n +1)·⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ·9-n 11, 而⎝⎛⎭⎫1011n >0,所以当n <9时,a n +1-a n >0,即a n +1>a n . 当n =9时,a n +1-a n =0,即a 10=a 9. 当n >9时,a n +1-a n <0,即a n +1<a n . 因此a 1<a 2<…<a 9=a 10>a 11>a 12>…,所以当n =9或n =10时,数列{a n }有最大项,最大项为a 9或a 10,其值为10·⎝⎛⎭⎫10119. 第2讲 等差数列1.D 解析:设等差数列{a n }的公差为d ,由a 2=2,a 3=4,得⎩⎪⎨⎪⎧ a 1+d =2,a 1+2d =4,解得⎩⎪⎨⎪⎧a 1=0,d =2. ∴a 10=a 1+(10-1)×d =9d =18.故选D.2.B 解析:∵a 2+a 12=2a 7=32,∴a 7=16.又∵2a 3+a 15=a 3+(a 3+a 15)=a 3+a 11+a 7=3a 7=48.3.A4.A 解析:由a 1+a 7+a 13是一确定的常数,得3a 7是一确定的常数,②正确;S 13=13(a 1+a 13)2=13a 7是常数,③正确;S 8-S 5=a 6+a 7+a 8=3a 7,⑤正确. 5.A 解析:设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2.所以S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36.所以当n =6时,S n 取最小值.6.D 解析:S k +2-S k =a k +2+a k +1=2a 1+(2k +1)d =2+(2k +1)×2=24⇒k =5.故选D. 7.9279 解析:∴a 7b 7=a 7+a 7b 7+b 7=S 13T 13=7×13+14×13+27=9279.8.-1 解析:由S 2=S 6,得2a 1+d =6a 1+6×52d ,解得4(a 1+3d )+2d =0,即2a 4+d =0.所以a 4+(a 4+d )=0.即a 5=-a 4=-1.9.解:(1)设等差数列{a n }的公差d ,则a n =a 1+(n -1)d . 由题知,a 3=-3=a 1+2d =1+2d ,所以d =-2. a n =1+(n -1)(-2)=3-2n .(2)因为S k =k (a 1+a k )2=k (1+3-2k )2=k (2-k )=-35,所以k 2-2k -35=0,解得k =7或k =-5. 因为k ∈N *,所以k =7. 10.解:∵S n =12n -n 2,∴当n =1时,a 1=S 1=12-1=11.当n ≥2时,a n =S n -S n -1=(12n -n 2)-12(n -1)+(n -1)2=13-2n , 当n =1时,13-2×1=11=a 1,∴a n =13-2n .由a n =13-2n ≥0,得n ≤132,∴当1≤n ≤6时,a n >0;当n ≥7时,a n <0.(1)|a 1|+|a 2|+|a 3|=a 1+a 2+a 3=S 3=12×3-32=27. (2)|a 1|+|a 2|+|a 3|+…+|a 10|=a 1+a 2+a 3+…+a 6-(a 7+a 8+a 9+a 10)=2S 6-S 10=2(12×6-62)-(12×10-102)=52.(3)当1≤n ≤6时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a n =12n -n 2. 当n ≥7时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+a 3+…+a 6-(a 7+a 8+…+a n )=2S 6-S n =2(12×6-62)-(12n -n 2)=n 2-12n +72.第3讲 等比数列1.A 2.D 3.C 4.B 5.D 6.D 解析:∵a 5·a 11=a 3·a 13=3,a 3+a 13=4,∴a 3=1,a 13=3或a 3=3,a 13=1.∴a 13a 3=q 10=3或13.故选D. 7.D 解析:因为等差数列的公差为-2,则a 3=a 1-4,a 7=a 1-12,a 9=a 1-16.因为a 7是a 3与a 9的等比中项,所以a 27=a 3a 9.即(a 1-12)2=(a 1-4)(a 1-16).a 21-24a 1+144=a 21-20a 1+64,所以4a 1=80,a 1=20.于是S 10=10a 1+10×92d =10×20+45×(-2)=110.故选D.8.-2 2n -1-12 解析:由{a n }是等比数列得a 4=a 1q 3,又a 1=12,a 4=-4,所以-4=12q 3⇒q =-2.{|a n |}是以12为首项,以2为公比的等比数列,|a 1|+|a 2|+…+|a n |=2n -1-12. 9.解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0.又q ≠0,从而q =-12.(2)由已知可得a 1-a 1⎝⎛⎭⎫-122=3,故a 1=4.从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n .10.解:(1)因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n2,所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.第4讲 数列的求和1.C 2.D 3.C 4.B 5.C 6.A 7.60 8.n 2-n +22解析:设第n (n ≥2)行的第2个数构成数列{a n },则有a 3-a 2=2,a 4-a 3=3,a 5-a 4=4,…,a n -a n -1=n -1,相加得a n -a 2=2+3+…+(n -1)=2+n -12×(n -2)=(n +1)(n -2)2,a n =2+(n +1)(n -2)2=n 2-n +22.9.解:(1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2.所以a n =3+2(n -1)=2n +1.所以S n =3n +n (n -1)2×2=n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1)=14·⎝⎛⎭⎫1n -1n +1.所以T n =14·⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14·⎝⎛⎭⎫1-1n +1=n 4(n +1). 即数列{b n }的前n 项和T n =n4(n +1).10.解:(1)由已知可得a n +12n +1=a na n +2n,即2n +1a n +1=2n a n +1.即2n +1a n +1-2n a n=1. ∴数列⎩⎨⎧⎭⎬⎫2n a n 是公差为1的等差数列.(2)由(1)知2n a n =2a 1+(n -1)×1-=n +1,∴a n =2nn +1.(3)由(2)知b n =n ·2n , S n =1·2+2·22+3·23+…+n ·2n , ①2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1. ② ①-②得:-S n =2+22+23+…+2n -n ·2n +1=2(1+2n )1-2-n ·2n +1=2n +1-2-n ·2n +1.∴S n =(n -1)·2n +1+2.第5讲 利用几类经典的递推关系式求通项公式1.C2.A3.B4.4n -1 5.1n6.13n -2 解析:由a n +1=a n 3a n +1得1a n +1=3a n +1a n =1a n +3⇒1a n +1-1a n=3⇒1a n =1+3(n -1).所以a n =13n -2.7.2n -1+1 解析:由a n +1=2a n -1得a n +1-1=2(a n -1)⇒a n -1=2n -1⇒a n =2n -1+1.8.n ·3n -1 解析:∵a n +1=3a n +3n ,∴a n +13n =a n 3n -1+1.令a n 3n -1=b n ,∴数列{b n }是等差数列,b n =1+1(n -1)=n .∴a n =n ·3n -1.9.解:(1)由na n +1=(n +1)a n +2n 2+2n (n ∈N *), 得a n +1n +1-a n n =2,a 1=1, ∴⎩⎨⎧⎭⎬⎫a n n 是以2为公差,1为首项的等差数列. ∴a nn=2n -1,∴a n =n (2n -1).∴b n =a n +n =2n 2. 即{b n }的通项公式为b n =2n 2.(2)b n -2=2n 2-2=2(n -1)(n +1),∴1b n -2=14⎝⎛⎭⎫1n -1-1n +1(n ≥2).∴S =1b 2-2+1b 3-2+…+1b n -2=14⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+⎝⎛ 14- ⎭⎫16+⎦⎤…+⎝⎛⎭⎫1n -2-1n +⎝⎛⎭⎫1n -1-1n +1=14⎝⎛⎭⎫1+12-1n -1n +1=38-2n +14n (n +1).10.(1)证明:∵a n =2a n -1+2n -1 ⇒a n -1=2(a n -1-1)+2n ⇒a n -12n =a n -1-12n -1+1⇒a n -12n -a n -1-12n -1=1.∴数列⎩⎨⎧⎭⎬⎫a n -12n 为首项是2、公差是1的等差数列.(2)解:由(1)知,a n -12n =a 1-12+(n -1)×1,∴a n =(n +1)·2n +1.∴S n =(2·21+1)+(3·22+1)+…+(n ·2n -1+1)+[(n +1)·2n +1].即S n =2·21+3·22+…+n ·2n -1+(n +1)·2n +n .令T n =2·21+3·22+…+n ·2n -1+(n +1)·2n , ①则2T n =2·22+3·23+…+n ·2n +(n +1)·2n +1. ②②-①,得T n =-2·21-(22+23+…+2n )+(n +1)·2n +1=n ·2n +1.∴S n =n ·2n +1+n =n ·(2n +1+1). 专题三 数列的综合应用1.C 2.A 3.A 4.A 5.C 6.D 7.100 5 000 8.33 解析:由题意:1=a 1≤a 2≤a 1q ≤a 2+1≤a 1q 2≤a 2+2≤a 1q 3,∴a 2≤q ≤a 2+1,a 2+1≤q 2≤a 2+2,q 3≥a 2+2≥3.∵a 2≥1,a 1=1,∴a 2,a 2+1,a 2+2的最小值分别为1,2,3.∴q min =33.9.(1)解:由已知可得⎩⎪⎨⎪⎧q +3+a 2=12,q =3+a 2q , 解得,q =3或q =-4(舍去),a 2=6.∴a n =3+(n -1)3=3n ,b n =3n -1.(2)证明:∵S n =n (3+3n )2, ∴1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1. ∴1S 1+1S 2+…+1S n=23⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1n +1 =23⎝⎛⎭⎫1-1n +1. ∵n ≥1∴0<1n +1≤12, ∴13≤23⎝⎛⎭⎫1-1n +1<23. 故13≤1S 1+1S 2+…+1S n <23. 11.解:(1)由已知得,当n ≥2时,b n =S n -S n -1=(32n 2-12n )-(32(n -1)2-12(n -1))=3n -2. 又b 1=1=3×1-2,符合上式.故数列{b n }的通项公式b n =3n -2.又∵a 3n =(2)4n b -+,∴a n =4-(b n +2)3=4-(3n -2)+23=⎝⎛⎭⎫14n . 故数列{a n }的通项公式为a n =⎝⎛⎭⎫14n .(2)∵c n =a n b n =(3n -2)·⎝⎛⎭⎫14n , ∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -2)×⎝⎛⎭⎫14n , ①14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, ② ①-②得34S n =14+3×⎣⎡ ⎝⎛⎭⎫142+⎝⎛⎭⎫143+⎝⎛⎭⎫144+…+⎦⎤⎝⎛⎭⎫14n -(3n -2)×⎝⎛⎭⎫14n +1 =14+3×⎝⎛⎭⎫142⎣⎡⎦⎤1-⎝⎛⎭⎫14n -11-14-(3n -2)×⎝⎛⎭⎫14n +1 =12-(3n +2)×⎝⎛⎭⎫14n +1. ∴S n =23-12n +83×⎝⎛⎫14n +1. (3)∵c n =(3n -2)·⎝⎛⎭⎫14n , ∴c n +1-c n =(3n +1)·⎝⎛⎭⎫14n +1-(3n -2)·⎝⎛⎭⎫14n =⎝⎛⎭⎫14n ·⎣⎡⎦⎤3n +14-(3n -2) =-9·⎝⎛⎭⎫14n +1(n -1). 当n =1时,c n +1=c n ;当n ≥2时,c n +1≤c n ,∴(c n )max =c 1=c 2=14. 若c n ≤14m 2+m -1对一切正整数n 恒成立, 则14m 2+m -1≥14. ∴m 2+4m -5≥0,即m ≤-5或m ≥1.。