数列专题讲解(学生版)
- 格式:doc
- 大小:268.43 KB
- 文档页数:8
第二节 等差数列一知识梳理一等差数列的有关概念(1)等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义的表达式为a n +1-a n =d (n ∈N *).(2)等差中项:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项满足A =a +b2或者2A =a +b .(3)通项公式:如果等差数列{a n }的首项为a 1,公差为d ,那么通项公式为a n =a 1+(n -1)d (n ∈N *).(4)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2,推导方法是倒序相加法.二等差数列a n 的性质(1)等差数列的拓展通项公式:a n =a m +(n -m )d (n ,m ∈N *),d =a n -a mn -m.(2)a n =a 1+(n -1)d =dn +(a 1-d ),当d ≠0时,a n 是关于n 的一次函数,斜率为公差d ,反之亦成立.若公差d >0,则为递增数列,若公差d <0,则为递减数列.(3)a m ,a m +k ,a m +2k ,a m +3k ,⋯仍是等差数列,公差为kd .(4)☆若a m 1+a m 1+⋯+a mk =a n 1+a n 1+⋯+a nk ⇔m 1+m 2+⋯+m k =n 1+n 2+⋯+n k .特别地,若m +n =p +q =2k ,则a m +a n =a p +a q =2a k .三等差数列前n 项和S n 的性质(1)S n =na 1+n (n -1)2d =d 2n 2+a 1-d2n ,当d ≠0时,S n 是关于n 的二次函数且没有常数项.显然当d <0时,S n 有最大值,d >0时,S n 有最小值.(2)☆S n n =d 2n +a 1-d2,即S n n 也是等差数列,其公差为a n 的公差的一半.(3)☆等差数列依次k 项之和,仍是等差数列,即数列S k ,S 2k -S k ,S 3k -S 2k ,⋯也是等差数列,公差为k 2d .(4)☆S 2n -1=2n -1 (a 1+a 2n -1)2=2n -1 a n (a n 是前2n -1项的最中间项),例S 9=9(a 1+a 9)2=9a 5;S 2n =2n (a 1+a 2n )2=n a n +a n +1 (a n 和a n +1是前2n 项的最中间两项),例S 10=10(a 1+a 10)2=5a 5+a 6 .(5)☆当总项数为2n -1项时,有n 项奇数项,S 奇=n (a 1+a 2n -1)2=na n有n -1项偶数项,S 偶=(n -1)(a 2+a 2n -2)2=(n -1)a n,此时,S 奇-S 偶=a n ,S 奇S 偶=nn -1;当总项数为2n 项时,有n 项奇数项,S 奇=n (a 1+a 2n -1)2=na n有n 项偶数项,S 偶=n (a 2+a 2n )2=na n +1,此时,S 偶-S 奇=nd ,S 偶S 奇=an +1a n ;(6)☆综合(4)和(5)得,n 为奇数时,S n =na 中,S 奇=n +12a 中,S 偶=n -12a 中,∴S 奇-S 偶=a 中;n 为偶数时,S 偶-S 奇=nd 2.(7)数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.二题型讲解一等差数列的基础题型一等差数列基本量的计算解题通法(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n 1.(2021·武汉调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.22.(2021·内蒙古模拟)已知等差数列{a n }中,S n 为其前n 项的和,S 4=24,S 9=99,则a 7=( )A.13B.14C.15D.163.已知等差数列{a n }的前n 项和为S n ,且a 2+a 5=-14,S 3=-39,则S 10=( )A.6B.10C.12D.204.(2022·陕西汉中)已知等差数列a n 的前n 项和为S n ,a 6=15,S 9=99,则等差数列a n 的公差是( )A.-4B.-3C.14D.45.(2022·陕西·西安工业大学附中)设等差数列a n 的前n 项和为S n ,若a 4=4,S 9=72,则a 10=( )A.20B.23C.24D.286.(2020·新高考Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为.二等差数列的判定与证明(详见第一节题型四)2.(2021·南京模拟)已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:1S n是等差数列;(2)求a n 的表达式.反思感悟等差数列判定与证明的方法方法解读适合题型定义法若a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中证明问题等差中项法2a n =a n +1+a n -1(n ≥2,n ∈N *)成立⇔{a n }是等差数列通项公式法a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列7.下列选项中,为“数列a n 是等差数列”的一个充分不必要条件的是( )A.2a n =a n +1+a n -1(n ≥2)B.a n 2=a n +1⋅a n -1n ≥2C.通项公式a n =2n -3D.a n +2-a n =a n +1-a n -1n ≥28.(2022·全国·高三专题练习)已知不全相等的实数a ,b ,c 成等比数列,则一定不可能是等差数列的为( )A.a ,c ,b B.a 2,b 2,c 2C.|a |,|b |,|c |D.1a ,1b ,1c9.(2022·全国·课时练习)(多选)若a n是等差数列,则下列数列为等差数列的有( )A.a n+3B.a2nC.a n-1+a nD.2a n+n10.(2022·全国·高二课时练习)(多选)在数列a n中,a1=3,且对任意大于1的正整数n,点a n,a n-1在直线x-y-3=0上,则( )A.数列a n是等差数列B.数列a n是等差数列C.数列a n的通项公式为a n=3nD.数列a n的通项公式为a n=3n三求数列{|a n|}的前n项和3.数列{a n}的前n项和S n=100n-n2(n∈N*),设b n=|a n|,求数列{b n}的前n项和T n.反思感悟已知等差数列{a n},求绝对值数列{|a n|}的有关问题是一种常见的题型,解决此类问题的核心便是去掉绝对值,此时应从其通项公式入手,分析哪些项是正的,哪些项是负的,即找出正、负项的“分界点”.11.在等差数列{a n}中,a10=23,a25=-22.(1)数列{a n}前多少项和最大?(2)求{|a n|}的前n项和S n.12.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+⋯+|a n|,求T n.二等差数列性质的应用一下标和性质的应用(m+n=p+q=2k)1.(2022·广州市阶段训练)已知{a n}是等差数列,a3=5,a2-a4+a6=7,则数列{a n}的公差为( )A.-2B.-1C.1D.2反思感悟(1)由于确定等差数列需两个条件,而这三个小题都只有一个条件,故可确定a1与d的关系式,将其整体代入即可解决问题,但更简捷的方法是直接利用等差数列性质a m+a n=a p+a q⇔m+n=p+q求解(注意项数不变,脚标和不变).(2)等差数列中最常用的性质:①d=a p-a qp-q,②a m1+a m1+⋯+a mk=a n1+a n1+⋯+a nk⇔m1+m2+⋯+m k=n1+n2+⋯+n k.特别地若m+n=p+q,则a m+a n=a p+a q. (3)利用等差数列性质(特别是感觉条件不够时)求解既简捷,又漂亮.1.(2022·吉林百校联盟联考)已知等差数列{a n}的前n项和为S n,若2a11=a9+7,则S25=( )A.1452B.145C.1752D.1752.(2021·江西九江一中月考)设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5=( )A.1B.-1C.2D.123.(2022·北京通州·一模)设等差数列a n的前n 项和为S n,若a3+a5=20,则S7=( )A.60B.70C.120D.1404.(2022·浙江杭州·二模)设等差数列a n的前n 项和为S n,若S7=42,则a2+a3+a7=( )A.12B.15C.18D.215.(2022·安徽滁州)已知a n是公差不为零的等差数列,若a3+a m=a4+a k,a1+a5=2a k,m,k∈N∗,则m+k=( )A.7B.8C.9D.106.(2022·河北石家庄·二模)等差数列a n的前n 项和记为S n,若a2+a2021=6,则S2022=( )A.3033B.4044C.6066D.80887.(2022·河南平顶山)已知S n为正项等差数列a n的前n项和,若a3+a9=a26,则S11=( ) A.22 B.20 C.16 D.118.(2022·全国·高三专题练习)已知数列{a n }满足a n+1=a n+2且a2+a4+a6=9,则log3(a5+a7+ a9)=( )A.-3B.3C.-13D.13二等差数列前n项和S n的性质2.(2022·四川双流中学模拟)已知等差数列{a n}的前n项和为S n,若S10=1,S30=5,则S40=( )A.7B.8C.9D.10反思感悟思路1:设等差数列{a n}的首项为a1,公差为d,根据题意列方程组求得a1、d,进而可用等差数列前n项和公式求S40;思路2:设{a n}的前n项和S n=An2+Bn,由题意列出方程组求得A、B,从而得S n,进而得S40;思路3:利用等差数列前n项和性质S10,S20-S10,S30-S20,S40-S30是等差数列,由前三项求得S20,从而得此数列的公差,进而求得S40-S30,得S40;思路4:利用S nn是等差数列,由S1010、S3030可求出公差,从而可得S4040,进而求得S40.9.(2021·山东师大附中模拟)若S n 是等差数列{a n}的前n项和,且a2+a9+a19=6,则a10=__,S19=_____.10.若两个等差数列{a n}、{b n}的前n项和分别为A n、B n,且满足A nB n=2n-13n+1,则a3+a7+a11b5+b9的值为( )A.3944B.58C.1516D.132211.已知等差数列{a n },{b n },其前n 项和分别为S n ,T n ,a n b n =2n +33n -1,则S 11T 11等于( )A.1517B.2532C.1D.212.(2022·四川师范大学附属中学二模(理))设等差数列a n ,b n 的前n 项和分别是S n ,T n ,若Sn T n =2n3n +7,则a 6b 5=( )A.65B.1117C.1114D.313.在等差数列{a n }中,a 1=-2023,其前n 项和为S n ,若S 1212-S1010=2,则S 2023=( )A.-2023 B.-2022C.-2021D.-202014.设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=____.三数列中的S 奇、S 偶相关问题3.在等差数列{a n }中,S 10=120,且在这10项中,S 奇S 偶=1113,则公差d =________.15.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项与公差分别是( )A.0.5,0.5 B.0.5,1C.0.5,2D.1,0.516.已知在等差数列{a n }中,公差d =1,且前100项和为148,则前100项中的所有偶数项的和为____.17.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是_______,项数是________.三等差数列中的最值问题一关于S n的最值问题解题通法(1)在等差数列{a n}中,当a1>0,d<0时,S n有最大值,使S n取得最值的n可由不等式组a n≥0,a n+1≤0确定;当a1<0,d>0时,S n有最小值,使S n取到最值的n可由不等式组a n≤0,a n+1≥0确定.(2)S n=d2n2+a1-d2n,若d≠0,则从二次函数的角度看:当d>0时,S n有最小值;当d<0时,S n有最大值.当n取最接近对称轴的正整数时,S n取到最值.1.在等差数列{a n}中,a1=25,S8=S18,求前n 项和S n的最大值.2.(2022·吉林市调研)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n 最大时,n=()A.6B.7C.10D.9延伸 ①本例2中若将“S5=S9”改为“S5=S10”,则当S n取最大值时n=;延伸②本例2中,使S n<0的n的最小值为.二关于S n>0或S n<0时n的最值问题3.(2022·黑龙江牡丹江一中月考)已知数列{a n}为等差数列,若a11a10<-1,且其前n项和S n有最大值,则使得S n>0的最大值n为()A.11B.19C.20D.21延伸本例3中,使S n取最大值时n=.1.(2021·长春市模拟)等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A.6B.7C.8D.92.在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为.3.(2022·重庆·二模)(多选)设等差数列a n前n 项和为S n,公差d>0,若S9=S20,则下列结论中正确的有( )A.a15=0B.当n=15时,S n取得最小值C.a10+a22>0D.当S n>0时,n的最小值为294.(2022·内蒙古赤峰)已知等差数列a n的前n 项和为S n,若a3=15,S2=36,则S n取最大值时正整数n的值为( )A.9B.10C.11D.125.(多选)等差数列{an}的前n项和记为Sn,若a1>0,S10=S20,则( )A.d<0B.a16<0C.Sn≤S15D.当且仅当n≥32时,Sn<06.(2022·浙江省浦江中学高三期末)设等差数列a n的公差为d,其前n项和为S n,且S5=S13,a6+ a14<0,则使得S n<0的正整数n的最小值为( )A.16B.17C.18D.19跟踪测验1(2021·贵州阶段性检测)在等差数列{a n}中,已知a3+a5+a7=15,则该数列前9项和S9=( ) A.18 B.27 C.36 D.452已知等差数列{a n}的前n项和为S n,若a2= 4,S4=22,a n=28,则n=( )A.3B.7C.9D.103(2022·安徽合肥模拟)记等差数列{a n}的公差为d,前n项和为S n.若S10=40,a6=5,则( ) A.d=3 B.a10=12C.S20=280D.a1=-44一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d的范围是( ) A.d>875 B.d<325C.875<d<325D.875<d≤3255(多选)等差数列{a n}是递增数列,满足a7= 3a5,前n项和为S n,下列选项正确的是( )A.d>0B.a1>0C.当n=5时S n最小D.S n>0时,n最小值为86(多选)已知数列{a n}是公差不为0的等差数列,前n项和为S n,满足a1+5a3=S8,下列选项正确的有( )A.a10=0B.S10最小C.S7=S12D.S20=07(2022·安徽·芜湖一中)等差数列a n的前n 项和为S n,满足:3a27+S21=72,则S25=( ) A.72 B.75 C.60 D.1008(2022·全国·高三阶段练习(理))若数列3a n+2是等差数列,a1=1,a5=-53,则a2= ( )A.-1B.1C.-2D.29(2022·全国·高三专题练习)已知数列a nn∈N*是等差数列,S n是其前n项和,若a2a5+a8=0,S9=27,则数列a n的公差是( )A.1B.2C.3D.410(2022·河南·汝州市第一高级中学模拟预测(文))已知等差数列a n的前n项和为S n,且a5+ 2a10+a13=18,则S18=( )A.74B.81C.162D.14811(2022·安徽合肥·二模)设等差数列{a n}的前n项和为S n,S15=5(a3+a8+a m),则m的值为( )A.10B.12C.13D.1412(2022·全国·高三专题练习)(多选)已知a,b,c成等差数列,则( )A.a2,b2,c2一定成等差数列B.2a,2b,2c可能成等差数列C.ka+2,kb+2,kc+2(k为常数)一定成等差数列D.1a,1b,1c可能成等差数列一轮复习第六章数列13(2022·四川省成都市郫都区第一中学高三阶段练习(文))若等差数列{a n}的公差为d,前n项和为S n,则“d<0”是“S n有最大值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14(2022·重庆·二模)等差数列a n的公差为2,前n项和为S n,若a m=5,则S m的最大值为( )A.3B.6C.9D.1215(2022·云南师大附中)已知a n是等差数列,S n是a n的前n项和,则“对任意的n∈N*且n≠3,S n>S3”是“a4>a3”的( )A.既不充分也不必要条件B.充分不必要条件C.必要不充分条件D.充要条件16(2022·四川南充)设等差数列a n的前n项和为S n,满足a1<0,S9=S16,则( )A.d<0B.S n的最小值为S25C.a13=0D.满足S n>0的最大自然数n的值为2517(2022·全国·高三专题练习)在等差数列a n中,S n为a n的前n项和,a1>0,a6a7<0,则无法判断正负的是( )A.S11B.S12C.S13D.S1418(2022·全国·高三专题练习)(多选)已知数列{an}是公差不为0的等差数列,前n项和为Sn,满足a1+5a3=S8,下列选项正确的有( )A.a10=0B.S7=S12C.S10最小D.S20=019(2022·全国·高三专题练习)(多选)等差数列a n与b n的前n项和分别为S n与T n,且S2nT n= 8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀x∈N*,T n>020(2022·全国·高三专题练习)(多选设a n是等差数列,S n是其前n项的和,且S5<S6,S6=S7> S8,则下列结论正确的是( )A.d>0B.a7=0C.S9>S5D.S6与S7均为S n的最大值21(2022·云南昭通)等差数列a n,b n的前n项和分别为S n,T n,S nT n=3n-22n+1,a1=2,则b n的公差为____.22(2022·全国·高三专题练习)已知两个等差数列a n和b n的前n项和分别为S n,T n,且S nT n= n2n+1,则a3b5=_________.23(2022·全国·高三专题练习)已知等差数列a n,b n的前n项和分别为S n,T n,若S nT n= 3n-12n+3,则a9b11=______.1112一轮复习 第六章 数列公众号:玩酷高中数学24(2022·黑龙江·哈九中二模)已知数列a n 满足a 1a 2⋅⋅⋅a n =2-2a n ,n ∈N ∗.证明:数列11-a n是等差数列,并求数列a n 的通项公式;25(2022·全国·高三专题练习)已知数列a n 满足a 1=4,a n +1=4-4a nn ∈N *.求证:1a n -2 是等差数列;26(2022·全国·高三专题练习)已知数列a n 满足,a 1=3,a n +1=3-4a n +1n ∈N *,设数列b n =1a n -1(1)求证数列b n 为等差数列;(2)求数列a n 的通项公式;27(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.。
一、知识梳理【数列及基本概念】1. 数列的基本概念数列概念,有穷数列,无穷数列,递增、递减数列,数列的通项公式,数列的前n 项和。
2. 在数列{a n }中,前n 项和S n 与通项a n 的关系:=n a ⎪⎩⎪⎨⎧≥==21n n a n【等差数列】1.等差数列的定义: - =d (d 为常数). 2.等差数列的通项公式:⑴ a n =a 1+ ×d ⑵ a n =a m + ×d3.等差数列的前n 项和公式:S n = = .4.等差中项:如果a 、b 、c 成等差数列,则b 叫做a 与c 的等差中项,即b = . 5.等差数列{a n }的三个重要性质: (1)时,等差数列{a n }是递增数列,时,等差数列{a n }是递减数列。
(2) m , n , p , q ∈N *,若m +n =p +q ,则 .(3)数列{a n }的前n 项和为S n ,S 2n -S n ,S 3n -S 2n 成 数列.【等比数列】1.等比数列的定义:)()(=q (q 为不等于零的常数). 2.等比数列的通项公式:⑴ a n =a 1q n -1 ⑵ a n =a m q n -m 3.等比数列的前n 项和公式:S n = ⎪⎩⎪⎨⎧=≠)1()1(q q 【注意】在公比q 不确定时一定要进行分类讨论。
4.等比中项:如果a ,b ,c 成等比数列,那么b 叫做a 与c 的等比中项,即b 2= .5.等比数列{a n }的几个重要性质:⑴ m ,n ,p ,q ∈N *,若m +n =p +q ,则 .⑵ S n 是等比数列{a n }的前n 项和且S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 成 数列. ⑶ 若等比数列{a n }的前n 项和S n 满足{S n }是等差数列,则{a n }的公比q = .【数列部分重点题型】等差、等比数列性质及证明方法,求数列的通项公式,数列求和与最值问题,数列极限及运算。
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
数学精品课高中数学竞赛辅导公开课解析数列与递推关系数列与递推关系是高中数学竞赛中的重要考点之一。
在这节数学精品课的辅导公开课中,我们将深入解析数列与递推关系,帮助同学们更好地掌握相关知识,并在竞赛中取得优异成绩。
一、数列的概念与分类1.1 数列的定义数列是按照一定的顺序排列的一组数字或对象。
通常用字母表示,如a₁、a₂、a₃,其中下标表示该数字或对象在数列中的位置。
1.2 数列的分类数列可以分为等差数列、等比数列和其他特殊数列。
1.2.1 等差数列等差数列是指数列中的相邻两项之差恒定的数列。
其通项公式为an = a₁ + (n-1)d,其中a₁为首项,d为公差,n为项数。
1.2.2 等比数列等比数列是指数列中的相邻两项之比恒定的数列。
其通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比,n为项数。
1.2.3 其他特殊数列除了等差数列和等比数列,还存在其他特殊数列,如斐波那契数列、递增数列等。
二、递推关系的求解递推关系是数列中的一种重要性质,根据已知项与后一项的关系,可以推导出数列中的其他项。
2.1 递推关系的定义递推关系是指数列中每一项与前一项之间的关系。
通常用递推公式表示,如an = an-1 + d,其中an-1表示前一项,d为公差。
2.2 递推关系的求解方法求解递推关系需要根据已知的条件,逐步推导出数列的后续项。
常见的求解方法包括直接法、差分法和通项法等。
2.2.1 直接法直接法是通过观察数列中的规律,根据已知的条件得出数列的递推关系。
这种方法适用于递增或递减规律明显的数列。
2.2.2 差分法差分法是通过计算数列中相邻项之差来确定数列的递推关系。
通过多次差分,可以得出数列的递推公式。
2.2.3 通项法通项法是通过求解数列的通项公式,进而推导出数列的递推关系。
这种方法适用于等差数列和等比数列。
三、常见数列问题的解析在数学竞赛中,常常会出现与数列与递推关系相关的问题。
下面我们通过实例来解析一些常见的数列问题。
数列找规律学生姓名授课日期教师姓名授课时长知识定位知识梳理例题讲解【试题来源】【题目】下面每列数都有什么规律呢?你能找到并继续往下填吗?⑴ 1,3,5,7,( ),()。
⑴ 2,4,6,8,(),()。
⑴ 1,4,7,10,(),()。
⑴ 35,30,25,20,(),( )。
【试题来源】【题目】你知道下面数列的规律吗?请继续往下写。
⑴1,3,9,(),()。
⑵1,10,100,1000,(),()。
⑶64,32,16,8,(),()。
【试题来源】【题目】有一个人养了一对刚出生的小兔子,一般而言,一对兔子如果第一个月出生,第二个月长大,第三个月就能生一对小兔子,以后每个月都能生出一对小兔子。
而新生的一对小兔子经过一个月可以长成大兔子,以后也是每月生一对小兔子。
假如所有兔子都不死,问:从一对小兔子出生经过一年的时间一共有多少对兔子?【试题来源】【题目】数列的变化非常多,下面的数列要我们多动脑筋才能找出来。
快来试一试吧!⑴5,7,10,14,( ),25,( )。
⑵100,81,64,49,36,25,( ),9,4,1 。
⑶1,2,6,24 , ( )。
⑷6,9,15,24,39,( ),( )。
【试题来源】【题目】下图的数是按一定规律排列的,请按规律填上所缺数。
习题演练【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、6、10、14、18、22、( )A.25B.28C.26D.21【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )1、2、4、8、16、( )A.30B.32C.15D.28【试题来源】【题目】有这样一列数:1, 1, 2, 3, 5, 8, 13, 21, 34, 55,,你知道这个数列第13项是( )?A.198B.213C.250D.233【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
正确的选项是( )2、3、5、8、12、17、( )A.23B.22C.19D.25【试题来源】【题目】根据下面这列数的规律,正确填出( )内的数。
第九讲数列综合模块一、基础性数列:例1.已知数列4,11,18,25,……,158,那么(1)这个数列的第20个数是;(2)88是这个数列的第个数;(3)这个数列一共有项;(4)将这个数列中所有的数加起来,和是。
解:(1)此数列是等差数列,首项a 1=4,公差d =7,所以第20个数是a 20=4+7×19=137;(2)88=4+7×12,所以88是数列中的第13个数;(3)(158−4)÷4+1=23,所以158是数列的第23个数;(4)S 23=23(4154)18172⨯+=。
例2.观察下面的数列,找规律填空:(1)2,6,10,14,18,22,,,34;(2)1,3,9,27,81,,729;(3)1,4,9,16,25,,,64;(4),,12,19,31,50,81,131,212。
解:(1)26;30;(2)243;(3)36;49;(4)5;7;第(4)题是斐波那契数列的一种,即从第3个数开始,都等于前2个数的和。
模块二、等比数列:例3.(1)等比数列2,43,89,……的公比为;第5项为; (2)等比数列的通项公式a n =5×2n ,则其首项为;公比为;(3)每项为正数的等比数列中,a 1=2,a 3=18,则a 5=,a 6=;(4)在等比数列a n 中,若公比q =4,且前3项之和等于21,那么这个数列的第5项a 5=。
解:(1)公比q =43÷2=23,第5项a 5=2×(23)4=3281; (2)a 1=5×2=10,公比q =2;(3)因为a 3=a 1×q 2,得18=2×q 2,解得q =3,所以a 5=2×34=162,a 6=162×3=486;(4)前3项的和为a 1+4a 1+16a 1=21,解得a 1=1,所以a 5=44=256.例4.(1)1+4+42+43+…+46=;(2)237111113333+++++ =。
高中数学53个题型归纳与方法技巧总结篇专题23数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N*-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】题型一:数列的周期性题型二:数列的单调性题型三:数列的最大(小)项题型四:数列中的规律问题题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值()A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =()A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于()A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为()A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于()A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩ *(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为()A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =()A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于()A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是()A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是()A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为()A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为()A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是()A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取值范围为()A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法作差比较法根据1n n a a +-的符号判断数列{}n a 是递增数列、递减数列或是常数列作商比较法根据1(>0<0)n n n na a a a +或与1的大小关系进行判断数形结合法结合相应函数的图象直观判断题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是()A .12B .1C .2D .3例16.已知数列{}n a 满足110a =,12n na a n+-=,则n a n 的最小值为()A .-1B .112C .163D .274例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为()A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____例19.数列,1n =,2, ,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n nn a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =.题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =();()f n =().A .352331n n +-B .362331n n -+C .372331n n -+D .382331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,()1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在()A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为()A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下:123456789101112131415……则图中数2020出现在A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为()A .343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n -=+-,则下列说法正确的是()A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a 例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是()A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为()A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为()A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为()A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是()A .[]40,25--B .[]40,0-C .[]25,25-D .[]25,0-【过关测试】一、单选题1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =()x 12345()f x 51342A .1B .2C .4D .52.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是()A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为()A .()9,128B .()10,128C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为()A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ()A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n aa n n=+,则“21a a >”是“数列{}n a 单调递增”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是()A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是()A .第2项B .第3项C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是()A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是()A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n=D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩ ,则数列{}n a 中的项的值可能为()A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是()A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是()A .20212a =B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为()A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有()A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是()A .第四行的数是17,18,20,24B .()11232-+=⋅n n n a C .()11221n n a n +=+D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是()A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是()A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n=D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是().A .{}n a 是递增数列B .{}n a 是递减数列C .122n a n=-D .数列{}n S 的最大项为5S 和6S 21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则()A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2n n ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>= ,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8n n a n =+,则数列{}n a 中的最大项的n =________.27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}na 中,11a =,1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++= ___.。
数列的讲解
数列在数学中是一个非常重要的概念,它是由一系列有规律的数
字组成的序列。
数列包括等差数列、等比数列、斐波那契数列等,它
们在数学中都有广泛的应用。
首先,让我们来看等差数列。
等差数列是指数列中每一项与它前
面的一项之差相等。
这个相等的差值称为公差。
比如说,1、3、5、7、9就是一个公差为2的等差数列。
等差数列在数学中有很多应用。
比如,我们可以通过等差数列来
求和。
我们假设有一个等差数列,它的第一项为a1,公差为d,那么
它的第n项为an=a1+(n-1)d。
根据等差数列的求和公式,这个等差数
列的和为S=n(a1+an)/2。
接着,让我们来看等比数列。
等比数列是指数列中每一项与前一
项的比相等。
这个相等的比值称为公比。
比如说,2、4、8、16、32就是一个公比为2的等比数列。
等比数列也有很多的应用。
比如,我们可以通过等比数列来求和。
我们假设有一个等比数列,它的第一项为a1,公比为q,那么它的第n 项为an=a1q^(n-1)。
根据等比数列的求和公式,这个等比数列的和为
S=a1(1-q^n)/(1-q)。
最后,让我们来看斐波那契数列。
斐波那契数列是指数列中每一项都是前两项之和,它的前几项为1、1、2、3、5、8、13、21……这个数列在自然界中也有很多应用,比如螺旋壳、黄金分割等等。
综上所述,数列是数学中非常重要的概念,它有很多的应用。
学习数列,不仅能帮助我们提高数学水平,还能增强我们的逻辑思维能力和分析问题能力。