10数列 (学生版)
- 格式:doc
- 大小:187.50 KB
- 文档页数:2
求数列通项公式方法(1).公式法(定义法)根据等差数列、等比数列的定义求通项 例:1已知等差数列}{n a 满足:26,7753=+=a a a , 求n a ;2.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式;3.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;4.等比数列}{n a 的各项均为正数,且13221=+a a ,62239a a a =,求数列}{n a 的通项公式5.已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式;6.已知数列}{n a 满足2122142++=⋅==n n n a a a a a 且, (*∈N n ),求数列{}n a 的通项公式;7.已知数列}{n a 满足,21=a 且1152(5)n nn n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;8.已知数列}{n a 满足,21=a 且115223(522)n n n n a a +++⨯+=+⨯+(*∈N n ),求数列{}n a 的通项公式;9.数列已知数列{}n a 满足111,41(1).2n n a a a n -==+>则数列{}n a 的通项公式= (2)累加法1、累加法 适用于:1()n n a a f n +=+21321(1)(2) ()n n a a f a a f a a f n +-=-=-= 两边分别相加得 111()nn k a a f n +=-=∑例:1.已知数列{}n a 满足141,21211-+==+n a a a n n ,求数列{}n a 的通项公式。
2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
第2讲 数列计算第一部分:知识介绍1、等差数列三个重要的公式:① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()② 项数公式:项数=(末项-首项)÷公差+1 ③ 求和公式:和=(首项+末项)⨯项数÷22、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.3、公式综合:1) 连续自然数求和(1)1232n n n ⨯+++++=L2) ()()()213572112311321n n n n n +++++-=++++-++-++++=L L L 3) N 个连续自然数的平方和 2222(1)(21)1236n n n n ⨯+⨯+++++=L4) N 个连续自然数的立方和 ()2223333(1)1231234n n n n ⨯+++++=++++=L L 5) 平方差公式:()()22a b a b a b -=+- 完全平方公式()2222a b a ab b ±=±+ 6) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+7) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+4、等比数列:如果一个数列,从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q 表示()0q ≠。
(或者从第二数开始每一个数都和前面数的倍数都是相同的,这个数列就叫做等比数列。
)一般地,等比数列求和采用“错位相减法”。
(公比不为1)其它复合型数列整数与数列本讲数表应用题找规律计算等差数列应用题求和方法初步认识等比数列第二部分:例题精讲【例 1】(试题汇编)计算11、14、17、20、……、95、98这个等差数列的项数是()【例 1】在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.【巩固】5、8、11、14、17、20、L,这个数列有多少项?它的第201项是多少?65是其中的第几项?已知数列0、4、8、12、16、20、…… ,它的第43项是多少?【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778L+++++++=⑵13578799L++++++=⑶471013404346L+++++++=【例 2】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是()【例 3】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 4】(试题汇编)有一本50页的书,再把这本书的各页的页码累加起来时,有一张纸的页码错误的多加了一次,得到的和为1302,那么中间多加的页码为()。
一、数列的定义按一定次序排列的一列数就叫做数列;数列中每个数都叫做这个数列的项,其中的第一个数称为这个数列的第1项,第2个数称为第2项,第n 个数称为第n 项。
根据数列中项的个数分类,把项数有限的数列(即有有穷多个项的数列)称为有穷数列;把项数无限的数列(即有无穷多个数的数列)称为无穷数列。
研究数列的目的是为了发现其中的内在规律,以作为解决问题的依据。
【诀窍】1,比较简单的数列,一般从相邻两数的和差积商中找规律,稍复杂的数列,要全方位入手,把数列合理地拆分成为几部分,分别考察,还要把每个数与项数之间联系起来考虑。
2,图形中的数在图形中所处的位置,往往与它们之间的变化规律有关,需要仔细进行分析,才能找到规律;3,由若干数组组成的数列,要分别找出数组中各位商数的规律,然后再按题目要求求解。
【注意】通过观察数表中的已知数据,发现规律并进行补填与计算的问题.这里要注意数表结构的差异,它们通常是按行、按列、沿斜线或螺旋线逐步形成的.涉及小数的,或与其他方面知识相综合的数列问题.二、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示;知识框架找规律和 :一个数列的前n 项的和,常用n S 来表示 .三、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.四、图形规律找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴ 图形数量的变化; ⑵ 图形形状的变化; ⑶ 图形大小的变化; ⑷ 图形颜色的变化; ⑸ 图形位置的变化; ⑹ 图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.注:找规律问题,答案并不唯一,只要言之成理即可!一、图形规律【例 1】 请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。
2024新高考新试卷结构数列的通项公式的9种题型总结题型解密考点一:已知S n =f n ,求a n利用S n =a 1,n =1S n−Sn −1,n ≥2,注意一定要验证当n =1时是否成立【精选例题】1已知S n 为数列a n 的前n 项和,且S n =2n +1-1,则数列a n 的通项公式为()A.a n =2nB.a n =3,n =12n,n ≥2C.a n =2n -1D.a n =2n +1【答案】B【详解】当n ≥2时,S n -1=2n -1,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=21+1-1=3,不符合a n =2n ,则a n =3,n =12n,n ≥2.故选:B .2定义np 1+p 2+p 3+⋅⋅⋅+p n为n 个正数p 1,p 2,p 3,⋅⋅⋅,p n 的“均倒数”,若已知数列a n 的前n 项的“均倒数”为15n,则a 10等于()A.85B.90C.95D.100【答案】C【详解】因为数列a n 的前n 项的“均倒数”为15n ,所以n a 1+a 2+a 3+⋅⋅⋅+a n =15n⇒a 1+a 2+a 3+⋅⋅⋅+a n =5n 2,于是有a 1+a 2+a 3+⋅⋅⋅+a 10=5×102,a 1+a 2+a 3+⋅⋅⋅+a 9=5×92,两式相减,得a 10=5×(100-81)=95,故选:C3(多选题)定义H n =a 1+2a 2+⋯+2n -1a nn为数列a n 的“优值”.已知某数列a n 的“优值”H n =2n ,前n 项和为S n ,下列关于数列a n 的描述正确的有()A.数列a n 为等差数列B.数列a n 为递增数列C.S 20222022=20252 D.S 2,S 4,S 6成等差数列【答案】ABC【详解】由已知可得H n =a 1+2a 2+⋯+2n -1a nn=2n ,所以a 1+2a 2+⋯+2n -1a n =n ⋅2n ,①所以n ≥2时,a 1+2a 2+⋯+2n -2a n -1=n -1 ⋅2n -1,②得n ≥2时,2n -1a n =n ⋅2n -n -1 ⋅2n -1=n +1 ⋅2n -1,即n ≥2时,a n =n +1,当n =1时,由①知a 1=2,满足a n =n +1.所以数列a n 是首项为2,公差为1的等差数列,故A 正确,B 正确,所以S n =n n +3 2,所以S n n =n +32,故S 20222022=20252,故C 正确.S 2=5,S 4=14,S 6=27,S 2,S 4,S 6不是等差数列,故D 错误,故选:ABC .4设数列a n 满足a 1+12a 2+122a 3+⋅⋅⋅+12n -1a n =n +1,则a n 的前n 项和()A.2n -1B.2n +1C.2nD.2n +1-1【答案】C【详解】解:当n =1时,a 1=2,当n ≥2时,由a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1+12n -1a n =n +1得a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1=n ,两式相减得,12n -1a n =1,即a n =2n -1,综上,a n =2,n =12n -1,n ≥2 所以a n 的前n 项和为2+2+4+8+⋯+2n -1=2+21-2n -1 1-2=2n ,故选:C .【跟踪训练】1无穷数列a n 的前n 项和为S n ,满足S n =2n ,则下列结论中正确的有()A.a n 为等比数列B.a n 为递增数列C.a n 中存在三项成等差数列D.a n 中偶数项成等比数列【答案】D【详解】解:无穷数列a n 的前n 项和为S n ,满足S n =2n ∴n ≥2,a n =S n -S n -1=2n -2n -1=2n -1,当n =1时,a 1=S 1=21=2,不符合上式,∴a n =2,n =1,2n -1,n ≥2,所以a n 不是等比数列,故A 错误;又a 1=a 2=2,所以a n 不是递增数列,故B 错误;假设数列a n 中存在三项a r ,a m ,a s 成等差数列,由于a 1=a 2=2,则r ,m ,s ∈N *,2≤r <m <s ,所以得:2a m =a r +a s ⇒2×2m -1=2r -1+2s -1∴2m =2r -1+2s -1,则∴1=2r -m -1+2s -m -1,又s -m -1≥0⇒2s -m -1≥1且2r -m -1>0恒成立,故式子1=2r -m -1+2s -m -1无解,a n 中找不到三项成等差数列,故C 错误;∴a 2n =22n -1(n ∈N *),∴a 2(n +1)a n =22n +122n -1=4∴a 2n 是等比数列,即a n 中偶数项成等比数列,故D 正确.故选:D .2对于数列a n ,定义H n =a 1+2a 2+3a 3+⋯+na nn为a n 的“伴生数列”,已知某数列a n 的“伴生数列”为H n =(n +1)2,则a n =;记数列a n -kn 的前n 项和为S n ,若对任意n ∈N *,S n ≤S 6恒成立,则实数k 的取值范围为.【答案】 3n +1;227≤k ≤196.【详解】因为H n =(n +1)2=a 1+2a 2+3a 3+⋯+na nn,所以n ⋅(n +1)2=a 1+2a 2+3a 3+⋯+na n ①,所以当n =1时,a 1=4,当n ≥2时,(n -1)⋅n 2=a 1+2a 2+3a 3+⋯+(n -1)a n -1②,①-②:3n 2+n =na n ,所以a n =3n +1,综上:a n =3n +1,n ∈N *,令b n =a n -kn =(3-k )n +1,则b n +1-b n =3-k ,可知{b n }为等差数列,又因为对任意n ∈N *,S n ≤S 6恒成立,所以S 6-S 5=b 6≥0,S 7-S 6=b 7≤0,则有b 6=3-k ×6+1=19-6k ≥0,b 7=3-k ×7+1=22-7k ≤0, 解得227≤k ≤196.故答案为:3n +1;227≤k ≤196考点二:叠加法(累加法)求通项若数列a n 满足a n +1−a n =f (n )(n ∈N *),则称数列a n 为“变差数列”,求变差数列a n 的通项时,利用恒等式a n =a 1+(a 2−a 1)+(a 3−a 2)+⋅⋅⋅+(a n −a n −1)=a 1+f (1)+f (2)+f (3)+⋅⋅⋅+f (n −1)(n ≥2)求通项公式的方法称为累加法。
数列求和的典型方法(学生版)※ 典型例题考点1.分组求和法求数列的前n 项和一、分组求和◎题型1:求数列{}n n a b ±的前n 项和n S思路1:1122()()()n n n S a b a b a b =±+±++±…1212()()n n a a a b b b =++⋅⋅⋅+±++⋅⋅⋅+◎题型2:求通项为()()n f n n a g n n ⎧=⎨⎩,是奇,是偶数数或(1)()n n a f n =-的数列的前n 项和n S 思路2:相邻项组合(1)当n 为偶数时,12341()()()n n n S a a a a a a -=+++++…;(2)当n 为奇数时,123421()()()n n n n S a a a a a a a --=++++++….思路3:奇偶项组合(1)当n 为偶数时,n S =13124()()n n a a a a a a -++++++……;(2)当n 为奇数时,n S 13241()()n n a a a a a a -=++++++…….思路4:公式优化(1)当n 为偶数时,利用套路2、3其中之一;(2)当n 为奇数时,S S a =-.例3、数列{}n a 的通项公式为2cos 3n a n =⋅,其前n 项和为n S . (Ⅰ)求32313n n n a a a --++及n S 3;(Ⅱ)若312n n n S b n -=⋅,求数列{}n b 的前n 项和n T .考点2.倒序相加法【例2】设()442xx f x =+,求122012201320132013f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 变式1.求222289sin 1sin 2sin 3....sin 89S =︒+︒+︒++︒变式2.已知函数()f x 对任意的x R ∈,都有()+(1)=1f x f x -,求1231(0)()()()....()(1)n n S f f f f f f n n n n-=++++++.考点4.裂项相消法求数列的前n 项和变式2(Ⅰ)已知数列{}n a 满足:1(21)(21)n a n n =-+,求数列{}n a 的n 项和n S . (Ⅱ)已知数列{}n a 满足:4(1)(21)(21)n n n a n n =--+,求数列{}n a 的n 项和n S . .考点5.数列的综合应用【例5】各项均为正数的数列{}n a 的前n 项和为n S ,n S 满足()223n n S n n S -+--()230n n +=,n N *∈. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意n N *∈,有1223111114n n a a a a a a ++++<. 变式1.设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.。
数列一、考点分析:本章的知识结构图:数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.复习建议:在进行数列二轮复习时,建议可以具体从以下几个方面着手:1.运用基本量思想(方程思想)解决有关问题;2.注意等差、等比数列的性质的灵活运用;3.注意等差、等比数列的前n项和的特征在解题中的应用;4.注意深刻理解等差数列与等比数列的定义及其等价形式;5.根据递推公式,通过寻找规律,运用归纳思想,写出数列中的某一项或通项,主要需注意从等差、等比、周期等方面进行归纳;6.掌握数列通项an与前n项和Sn 之间的关系;7.根据递推关系,运用化归思想,将其转化为常见数列;8.掌握一些数列求和的方法(1)分组求和(2)裂项相消(3)错位相减(4)倒序相加(5)公式法。
9.以等差、等比数列的基本问题为主,突出数列与函数、数列与方程、数列与不等式、数列与几何等的综合应用.一、 等差与等比数列的概念和性质1. 已知公差大于零的等差数列}{n a 的前n 项和为n S ,且满足:.22,1175243=+=⋅a a a a (1)求通项n a ;(2)若数列}{n b 是等差数列,且cn S b nn +=,求非零常数c ; 解:(1)34-=n a n(2)n n n n S n -=-+=222)341(, ⎪⎪⎩⎪⎪⎨⎧-===2102c b a 21-=c 2.设数列{a n }和{b n }满足a 1=b 1=6, a 2=b 2=4, a 3=b 3=3, 且数列{a n +1-a n }(n ∈N *)是等差数列,数列{b n -2}(n ∈N *)是等比数列. (1)求数列{a n }和{b n }的通项公式;(2)是否存在k ∈N *,使a k -b k ∈(0,21)?若存在,求出k ;若不存在,说明理由. 解:(1)927212+-=n n a n ,3)21(2-+=n n b(2)不存在3. (2008年海南宁夏卷)已知数列{}n a 是一个等差数列,且21a =,55a =-。
等差数列㈠求等差数列的通项公式1、已知数列{a n }为等差数列,且a 5=11,a 8=5,则a n =__________.2、已知{a n }是等差数列,a 5=10,d =3,求a 10.3、已知{a n }是等差数列,a 5=10,a 12=31,求a 20,a n .4、等差数列2,5,8,…,107共有多少项?5、在-1与7之间顺次插入三个数a 、b 、c 使这五个数成等差数列,试求出这个数列.6、成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.7、设数列{a n }是等差数列,a p =q,a q =p(p ≠q),求a p+q .8、两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?㈡等差数列的判断1、已知数列{a n }的通项公式为a n =pn+q,其中p 、q 为常数,且p≠0,问这个数列一定是等差数列吗?2、数列{a n }的通项公式a n =2n+5,则此数列( )A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n 的等差数列 3、在数列{a n }中,a 1=2,2a n+1=2a n +1则a 101的值为( ) A.49 B.50 C.51 D.52㈢等差数列的性质1、等差数列{a n }中,若a 1+a 2+a 3=3,a 4+a 5+a 6=9,则a 10+a 11+a 12=______________.2、等差数列{a n }中,已知a 2+a 3+a 10+a 11=36,则a 5+a 8=___________________.3、已知等差数列{a n }中,a 5+a 6+a 7=15,a 5·a 6·a 7=45,求数列{a n }的通项公式.4、设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-375、已知方程(x 2-2x+m)(x 2-2x+n)=0的四个根组成一个首项为41的等差数列,则|m-n|的值为 A.1B.43C.21D.83㈣等差数列的前n 项和1、求下列数列的和(1)1+2+3+…+n ; (2)1+3+5+…+(2n -1);(3)2+4+6+…+2n ; (4)1-2+3-4+5-6+…+(2n -1)-2n .2、已知一个等差数列{}n a 前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n 项和的公式吗?3、已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?4、在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.90 B.100 C.180 D.2005、如果一个等差数列中,S 10=100,S 100=10,则S 110=( ) A .90 B.-90 C.110 .D -1106、在等差数列{a n }中,S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值是( )A.7B.8C.9D.10 7、若一个等差数列前3项和为34,最后3项和为146,且所有项和为390,则这个数列的项数是 ( ) A .13 B .12 C .11 D .10 8、在等差数列{}n a 中,a 2+a 5=19,S 5=40,则a 10为( )A .27 B.28 C.29 D.309、已知一个等差数列的前四项和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A.24 B.26 C.27 D.2810、已知等差数列{a n }的通项公式为a n =2n+1,其前n 项和为S n ,则该数列{nS n }的前10项的和为( )A.120B.70C.75D.100 11、在等差数列中,154567405S S =-=,,则30S =( )A.68 B.189 C.78 D.12912、等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A .130 B .170 C .210 D .26013、等差数列的前m 项和是25,前2m 项和是100,则前3m 项和是 。
新高考新结构大题压轴--数列新定义一、解答题1(2024·浙江·模拟预测)已知实数q ≠0,定义数列a n 如下:如果n =x 0+2x 1+22x 2+⋯+2k x k ,x i ∈0,1 ,i =0,1,2,⋯,k ,则a n =x 0+x 1q +x 2q 2+⋯+x k q k.(1)求a 7和a 8(用q 表示);(2)令b n =a 2n -1,证明:ni =1b i =a 2n-1;(3)若1<q <2,证明:对于任意正整数n ,存在正整数m ,使得a n <a m ≤a n +1.2(2024·浙江温州·二模)数列a n ,b n 满足:b n 是等比数列,b 1=2,a 2=5,且a 1b 1+a 2b 2+⋅⋅⋅+a n b n =2a n -3 b n +8n ∈N * .(1)求a n ,b n ;(2)求集合A =x x -a i x -b i =0 ,i ≤2n ,i ∈N * 中所有元素的和;(3)对数列c n ,若存在互不相等的正整数k 1,k 2,⋅⋅⋅,k j j ≥2 ,使得c k 1+c k 2+⋅⋅⋅+c k j也是数列c n 中的项,则称数列c n 是“和稳定数列”.试分别判断数列a n ,b n 是否是“和稳定数列”.若是,求出所有j 的值;若不是,说明理由.3(2024·安徽池州·模拟预测)定义:若对∀k∈N*,k≥2,a k-1+a k+1≤2a k恒成立,则称数列a n为“上凸数列”.(1)若a n=n2-1,判断a n是否为“上凸数列”,如果是,给出证明;如果不是,请说明理由.(2)若a n为“上凸数列”,则当m≥n+2m,n∈N*时,a m+a n≤a m-1+a n+1.(ⅰ)若数列S n为a n的前n项和,证明:S n≥n2a1+a n;(ⅱ)对于任意正整数序列x1,x2,x3,⋯,x i,⋯,x n(n为常数且n≥2,n∈N*),若ni=1x2i-1≥ni=1x i-λ 2-1恒成立,求λ的最小值.4(23-24高三下·浙江·阶段练习)在平面直角坐标系xOy中,我们把点(x,y),x,y∈N*称为自然点.按如图所示的规则,将每个自然点(x,y)进行赋值记为P(x,y),例如P(2,3)=8,P(4,2)=14,P(2,5)=17.(1)求P(x,1);(2)求证:2P(x,y)=P(x-1,y)+P(x,y+1);(3)如果P(x,y)满足方程P(x+1,y-1)+P(x,y+1)+P(x+1,y)+P(x+1,y+1)=2024,求P(x,y)的值.5(2024·全国·模拟预测)设满足以下两个条件的有穷数列a 1,a 2,⋅⋅⋅,a n 为n n =2,3,4,⋅⋅⋅ 阶“曼德拉数列”:①a 1+a 2+a 3+⋅⋅⋅+a n =0;②a 1 +a 2 +a 3 +⋅⋅⋅+a n =1.(1)若某2k k ∈N * 阶“曼德拉数列”是等比数列,求该数列的通项a n (1≤n ≤2k ,用k ,n 表示);(2)若某2k +1k ∈N * 阶“曼德拉数列”是等差数列,求该数列的通项a n (1≤n ≤2k +1,用k ,n 表示);(3)记n 阶“曼德拉数列”a n 的前k 项和为S k k =1,2,3,⋅⋅⋅,n ,若存在m ∈1,2,3,⋅⋅⋅,n ,使S m =12,试问:数列S i i =1,2,3,⋅⋅⋅,n 能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.6(2024高三·全国·专题练习)设数列a n 的各项为互不相等的正整数,前n 项和为S n ,称满足条件“对任意的m ,n ∈N *,均有n -m S n +m =n +m S n -S m ”的数列a n 为“好”数列.(1)试分别判断数列a n ,b n 是否为“好”数列,其中a n =2n -1,b n =2n -1,n ∈N *并给出证明;(2)已知数列c n 为“好”数列,其前n 项和为T n .①若c 2024=2025,求数列c n 的通项公式;②若c 1=p ,且对任意给定的正整数p ,s s >1 ,有c 1,c s ,c t 成等比数列,求证:t ≥s 2.7(2024·湖南岳阳·二模)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.设该数列的前n项和为S n,规定:若∃m∈N*,使得S m=2p p∈N,则称m为该数列的“佳幂数”.(1)将该数列的“佳幂数”从小到大排列,直接写出前4个“佳幂数”;(2)试判断50是否为“佳幂数”,并说明理由;(3)(ⅰ)求满足m>1000的最小的“佳幂数”m;(ⅱ)证明:该数列的“佳幂数”有无数个.8(2024·辽宁大连·一模)对于数列A:a1,a2,a3a1∈N,i=1,2,3,定义“T变换”:T将数列A变换成数列B:b1,b2,b3,其中b i=a i+1-a i.这种“T变换”记作B=T A ,继续对数列B进行 (i=1,2),且b3=a3-a1“T变换”,得到数列C:c1,c2,c3,依此类推,当得到的数列各项均为0时变换结束.(1)写出数列A:3,6,5经过5次“T变换”后得到的数列:(2)若a1,a2,a3不全相等,判断数列A:a1,a2,a3不断的“T变换”是否会结束,并说明理由;(3)设数列A:2020,2,2024经过k次“T变换”得到的数列各项之和最小,求k的最小值.9(23-24高三下·江苏南通·模拟预测)设正整数n≥3,有穷数列a n满足a i>0(i=1,2,⋯,n),且a1 +a2+⋯+a n=n,定义积值S=a1⋅a2⋅⋯⋅a n.(1)若n=3时,数列12,1,32与数列16,23,136的S的值分别为S1,S2.①试比较S1与S2的大小关系;②若数列a n的S满足min S1,S2<S<max S1,S2,请写出一个满足条件的a n;(2)若n=4时,数列a1,a2,a3,a4存在i,j∈1,2,3,4,使得a i<1<a j,将a i,a j分别调整为a i =a i+a j-1,a j =1,其它2个a k(k≠i,j),令a k =a k.数列a1,a2,a3,a4调整前后的积值分别为S,S ,写出S,S 的大小关系并给出证明;(3)求S=a1⋅a2⋅⋯⋅a n的最大值,并确定S取最大值时a1,a2,⋯,a n所满足的条件,并进行证明.10(23-24高三下·海南省直辖县级单位·模拟预测)由n ×n 个数排列成n 行n 列的数表称为n 行n 列的矩阵,简称n ×n 矩阵,也称为n 阶方阵,记作:A (n ,n )=a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮a n 1a n 2a n 3⋯a nn其中a iji ∈N *,j ∈N *,i ,j ≤n 表示矩阵A 中第i 行第j 列的数.已知三个n 阶方阵分别为A (n ,n )=a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮a n 1a n 2a n 3⋯a nn,B (n ,n )=b 11b 12b 13⋯b 1n b 21b 22b 23⋯b 2n b 31b 32b 33⋯b 3n ⋮⋮⋮⋮b n 1b n 2b n 3⋯b nn,C (n ,n )=c 11c 12c 13⋯c 1n c 21c 22c 23⋯c 2n c 31c 32c 33⋯c 3n ⋮⋮⋮⋮c n 1c n 2c n 3⋯c nn,其中a ij ,b ij ,c ij i ,j ∈N *,i ,j ≤n 分别表示A (n ,n ),B (n ,n ),C (n ,n )中第i 行第j 列的数.若c ij =(1-μ)a ij +μb ij (μ∈R ),则称C (n ,n )是A (n ,n ),B (n ,n )生成的线性矩阵.(1)已知A (2,2)=2411,B (2,2)=34-112,若C (2,2)是A (2,2),B (2,2)生成的线性矩阵,且c 11=3,求C (2,2);(2)已知∀n ∈N *,n ≥3,矩阵A (n ,n )=a 11a 12⋯a 1n 332⋯3n ⋮⋮⋮a 1n a 2n ⋯a nn,B (n ,n )=b 11b 12⋯b 1n 12⋯n ⋮⋮⋮b 1n b 2n ⋯b nn ,矩阵C (n ,n )是A (n ,n ),B (n ,n )生成的线性矩阵,且c 21=2.(i )求c 23,c 2k k ∈N *,k ≤n ;(ii )已知数列b n 满足b n =n ,数列d n 满足d n =n2c 2n -n,数列d n 的前n 项和记为T n ,是否存在正整数m ,n ,使T n =b m +12b m成立?若存在,求出所有的正整数对(m ,n );若不存在,请说明理由.11(23-24高三下·安徽·模拟预测)基本不等式可以推广到一般的情形:对于n 个正数a 1,a 2,⋯,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+⋯+a nn≥n a 1a 2⋯a n ,当且仅当a 1=a 2=⋯=a n 时,等号成立.若无穷正项数列a n 同时满足下列两个性质:①∃M >0,a n <M ;②a n 为单调数列,则称数列a n 具有性质P .(1)若a n =n +4n 2,求数列a n 的最小项;(2)若b n =12n -1,记S n =ni =1b n ,判断数列S n 是否具有性质P ,并说明理由;(3)若c n =1+1nn,求证:数列c n 具有性质P .12(2024·山东泰安·一模)已知各项均不为0的递增数列a n 的前n 项和为S n ,且a 1=2,a 2=4,a n a n +1=2S n S n +1+S n -1-2S n (n ∈N *,且n ≥2).(1)求数列1S n的前n 项和T n ;(2)定义首项为2且公比大于1的等比数列为“G -数列”.证明:①对任意k ≤5且k ∈N *,存在“G -数列”b n ,使得b k ≤a k ≤b k +1成立;②当k ≥6且k ∈N *时,不存在“G -数列”c n ,使得c m ≤a m ≤c m +1对任意正整数m ≤k 成立.13(2024·河南信阳·一模)定义:max a,b=a,a≥b,b,a<b,min a,b=b,a≥b,a,a<b,已知数列{an}满足a n+min{a n+1,a n+2}=max{a n+1,a n+2}.(1)若a2=2,a3=3,求a1,a4的值;(2)若∀n∈N*,∃k∈N*,使得a n≤a k恒成立.探究:是否存在正整数p,使得a p=0,若存在,求出p的可能取值构成的集合;若不存在,请说明理由;(3)若数列{a n}为正项数列,证明:不存在实数A,使得∀n∈N*,a n≤A.14(2024·广东·模拟预测)已知数列a n与b n为等差数列,a2=b3,a1=2b1,a n前n项和为19n+n22.(1)求出a n与b n的通项公式;(2)是否存在每一项都是整数的等差数列c n,使得对于任意n∈N+,c n都能满足a n+b n-a n-b n2≤c n≤a n+b n+a n-b n2.若存在,求出所有上述的c n;若不存在,请说明理由.15(2024·吉林白山·二模)已知数列a n 的前n 项和为S n ,若数列a n 满足:①数列a n 项数有限为N ;②S N =0;③∑Ni =1a i =1,则称数列a n 为“N 阶可控摇摆数列”.(1)若等比数列a n 1≤n ≤10 为“10阶可控摇摆数列”,求a n 的通项公式;(2)若等差数列a n 1≤n ≤2m ,m ∈N * 为“2m 阶可控摇摆数列”,且a m >a m +1,求数列a n 的通项公式;(3)已知数列a n 为“N 阶可控摇摆数列”,且存在1≤m ≤N ,使得∑Ni =1a i =2S m ,探究:数列S n 能否为“N阶可控摇摆数列”,若能,请给出证明过程;若不能,请说明理由.16(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q-n k +1 q =∑m i =0q n -k +i n +ikq .17(2024·福建泉州·模拟预测)a ,b 表示正整数a ,b 的最大公约数,若x 1,x 2,⋯,x k ⊆1,2,⋯,m k ,m ∈N * ,且∀x ∈x 1,x 2,⋯,x k ,x ,m =1,则将k 的最大值记为φm ,例如:φ1 =1,φ5 =4.(1)求φ2 ,φ3 ,φ6 ;(2)已知m ,n =1时,φmn =φm φn .(i )求φ6n ;(ii )设b n =13φ6n -1,数列b n 的前n 项和为T n ,证明:T n <625.18(2024·河南开封·二模)在密码学领域,欧拉函数是非常重要的,其中最著名的应用就是在RSA加密算法中的应用.设p,q是两个正整数,若p,q的最大公约数是1,则称p,q互素.对于任意正整数n,欧拉函数是不超过n且与n互素的正整数的个数,记为φn.(1)试求φ3 ,φ9 ,φ7 ,φ21的值;(2)设n是一个正整数,p,q是两个不同的素数.试求φ3n与φ(p)和φ(q)的关系;,φpq(3)RSA算法是一种非对称加密算法,它使用了两个不同的密钥:公钥和私钥.具体而言:①准备两个不同的、足够大的素数p,q;②计算n=pq,欧拉函数φn;③求正整数k,使得kq除以φn的余数是1;④其中n,q称为私钥.称为公钥,n,k已知计算机工程师在某RSA加密算法中公布的公钥是(187,17).若满足题意的正整数k从小到大排列得到一列数记为数列b n的前n项和T n.,数列c n满足80c n=b n+47,求数列tan c n⋅tan c n+119(2024·全国·二模)已知由m m ≥3 个数构成的有序数组A :a 1,a 2,⋯,a m ,如果a 1-a i ≤a 1-a i +1 i =2,3,⋯,m -1 恒成立,则称有序数组A 为“非严格差增数组”.(1)设有序数组P :2,3,0,4 ,Q :1,2,3,0,4 ,试判断P ,Q 是否为“非严格差增数组”?并说明理由;(2)若有序数组R :1,t ,t 2,⋯,t 11 t ≠0 为“非严格差增数组”,求实数t 的取值范围.20(2024·海南省直辖县级单位·一模)若有穷数列a 1,a 2,⋯,a n (n 是正整数),满足a i =a n -i +1(i ∈N ,且1≤i ≤n ,就称该数列为“S 数列”.(1)已知数列b n 是项数为7的S 数列,且b 1,b 2,b 3,b 4成等比数列,b 1=2,b 3=8,试写出b n 的每一项;(2)已知c n 是项数为2k +1k ≥1 的S 数列,且c k +1,c k +2,⋯,c 2k +1构成首项为100,公差为-4的等差数列,数列c n 的前2k +1项和为S 2k +1,则当k 为何值时,S 2k +1取到最大值?最大值为多少?(3)对于给定的正整数m >1,试写出所有项数不超过2m 的S 数列,使得1,2,22,⋯,2m -1成为数列中的连续项;当m >1500时,试求这些S 数列的前2024项和S 2024.21(2024·江苏徐州·一模)对于每项均是正整数的数列P:a1,a2,⋯,a n,定义变换T1,T1将数列P变换成数列T1P :n,a1-1,a2-1,⋯,a n-1.对于每项均是非负整数的数列Q:b1,b2,⋯,b m,定义S(Q)=2(b1+2b2+⋯+mb m)+b21+b22+⋯+b2m,定义变换T2,T2将数列Q各项从大到小排列,然后去掉所有为零的项,得到数列T2Q .(1)若数列P0为2,4,3,7,求S T1P0的值;(2)对于每项均是正整数的有穷数列P0,令P k+1=T2T1P k,k∈N.(i)探究S T1P0与S P0的关系;(ii)证明:S P k+1≤S P k.22(2024·湖南·二模)已知数列a n的前n项和为S n,满足2S n+a n=3;数列b n满足b n+b n+1=2n+ 1,其中b1=1.(1)求数列a n,b n的通项公式;(2)对于给定的正整数i i=1,2,⋯,n,在a i和a i+1之间插入i个数c i1,c i2,⋯,c ii,使a i,c i1,c i2,⋯,c ii,a i+1成等差数列.(i)求T n=c11+c21+c22+⋯+c n1+c n2+⋯+c nn;(ii)是否存在正整数m,使得b m-1+1a m+2b m-1-2m+32T m-3恰好是数列a n或b n中的项?若存在,求出所有满足条件的m的值;若不存在,说明理由.23(2024·广西南宁·一模)若无穷数列a n 满足a 1=0,a n +1-a n =f n ,则称数列a n 为β数列,若β数列a n 同时满足a n ≤n -12,则称数列a n 为γ数列.(1)若数列a n 为β数列,f n =1,n ∈N ∗,证明:当n ≤2025时,数列a n 为递增数列的充要条件是a 2025=2024;(2)若数列b n 为γ数列,f n =n ,记c n =b 2n ,且对任意的n ∈N ∗,都有c n <c n +1,求数列c n 的通项公式.24(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n ∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +1 2+1n n +1 ,1≤n ≤1000,n >100 ,b n =12 203-n ,1≤n ≤5000,n >500 ,d n =a n ⊗b n ,证明:d 200<12.25(2024·河南·一模)在正项无穷数列a n 中,若对任意的n ∈N *,都存在m ∈N *,使得a n a n +2m =a n +m 2,则称a n 为m 阶等比数列.在无穷数列b n 中,若对任意的n ∈N *,都存在m ∈N *,使得b n+b n +2m =2b n +m ,则称b n 为m 阶等差数列.(1)若a n 为1阶等比数列,a 1+a 2+a 3=74,a 3+a 4+a 5=716,求a n 的通项公式及前n 项和;(2)若a n 为m 阶等比数列,求证:ln a n 为m 阶等差数列;(3)若a n 既是4阶等比数列,又是5阶等比数列,证明:a n 是等比数列.。
第二讲数列与数表1.等差数列:2.斐波那契数列:3.周期数列与周期:4.寻找数列的规律,通常有以下几种办法:1.逐步了解首项、末项、项数、公差与和之间的关系。
2.在解题中应用数列相关知识。
例1:有一个数列:4、7、10、13、…、25,这个数列共有多少项?例2:有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?例3:计算2+4+6+8+…+1990的和。
例4:计算(1+3+5+...+l99l)-(2+4+6+ (1990)例5:已知一列数:2,5,8,11,14,…,80,…,求80是这列数中第几个数。
例6:小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?例7:建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
例8:四(1)班45位同学举行一次同学联欢会,同学们在一起一一握手,且每两个人只能握一次手,同学们共握了多少次手?A1.有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
2.求1,5,9,13,…,这个等差数列的第3O项。
3.计算1+2+3+4+…+53+54+55的和。
4.计算(1+3+5+7+...+2003)-(2+4+6+8+ (2002)5.有一列数是这样排列的:3,11,19,27,35,43,51,…,求第12个数是多少。
B6.一等差数列,首项=7,公差=3,项数=15,它的末项是多少?7.计算(2OO1+1999+1997+1995)-(2OOO+1998+1996+1994)。
8.文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?9.李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?10.有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?C11.一些同样粗细的圆木,像如图所示一样均匀地堆放在一起,已知最下面一层有70根。
高考文科数学(客观题)考点分类训练<<数列>>
1.等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( )
A .9
B .18
C .36
D .72
2.已知等差数列{n a }中,74
a π
=
,则tan(678a a a ++)等于( )
A .
B .
C .-1
D .1
3.已知正项组成的等差数列{}n a 的前20项的和100,那么615a a ⋅最大值是( )
A .25
B .50
C .100
D .不存在
4.已知数列{}n a 是等比数列,且251
2,4
a a ==
,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .16(14)n --
B .16(12)n --
C .32(14)3n --
D .32
(12)3
n --
5.在等比数列{}n a 中,531=+a a ,1042=+a a ,则=7a ( )
A .64
B .32
C .16
D .128
6.已知数列}{n a 的前n 项和n S 满足:*),(N n m S S S m n m n ∈=++且
==101,6a a 那么( )
A .10
B .60
C .6
D .54
7.以双曲线15
422=-y x 的离心率为首项,以函数()24-=x
x f 的零点为公比的等比
数列的前n 项的和=n S ( ) A .()2
3
123--⨯n
B .n 2
3
3-
C .3
2321-+n
D . 3
234n
-
8.已知数列{}n a 的前n 项和为n S ,且21()n n S a n *=-∈N ,则5a =( ) A. 16- B. 16 C. 31 D. 32
9.已知等比数列{}n a 中,各项都是正数,且2312,2
1
,a a a 成等差数列,则7698
a a a a ++等于( ) A . 21+ B .
21- C . 223+ D . 223-
10.设数列{}n a 满足:12()n n a a n *+=∈N , 且前n 项和为n S ,则4
2
S a 的值为( ) A. 152
B.
415
C. 4
D. 2
11.已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.
12.在如图所示的数阵中,第9行的第2个数为___________.
13.已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________.
14.观察下列不等式:①
121<;②26121<+;③312
16121<++;... 请写出第n 个不等式_____________.
15.定义:称n x x x n +++ 21为n 个正数n x x x ,,,21 的平均倒数若正项数列}{n c 的 前n 项的“平均倒数”为上1
21
+n ,则数列}{n c 的通项公式为n c = .。