通信原理实验 CMI码型变换 实验报告
- 格式:docx
- 大小:848.57 KB
- 文档页数:7
实验二光纤通信系统线路码型CMI 编译码实验一、实验目的1、了解线路码型在光纤传输系统中的作用2、掌握线路码型CMI码的编译码过程以及电路实现原理二、实验内容1、验证符合光纤传输系统的线路码型2、观察线路码型的编译码过程三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱 1台2、20MHz双踪模拟示波器 1台3、FC-FC单模光跳线 1根4、连接导线 20根四、实验原理线路码型变换电路主要是适应数字光纤通信传输的需要而设置的,因此,数字光纤通信传输过程的前后必须有线路码型变换与反变换电路。
线路码型是指信道码的码型,它是将二进制的数字串变换为适合于特定传输媒介的形式。
因此,对于不同的传输媒介,有不同类型的线路码型。
对于光纤数字传输系统,不仅要考虑其传输媒介光纤的特性,还需考虑光电转换器件即光源器件和光检测器件的特性,例如光纤线路的带宽(色散)特性影响着对线路码型速率变化的选择,光源器件的非线性影响着对线路码型是单极性还是多极性的选择,一般说来,对光纤传输线路码型的选择主要考虑如下要求:(1)比特序列独立性(2)能提供足够的定时信息(3)减小功率谱密度中的高低频分量(4)误码倍增小(5)便于实现不中断业务的误码监测(6)易于在传送主信息(业务信息)的同时,传送监控、公务、数据等维护管理信息,以及区间通信等辅助信号。
(7)易于实现在介绍常用线路码型之前,先介绍一下线路码型的分类,如果从泛指的线路码型来讲,可以从不同角度来分,现简述如下。
以应用场合来分,有用于金属缆线的线路码型(又可细分为同轴电缆用的、对称电缆用的码型等等),无线系统用的线路码型,用于光缆传输系统的码型等。
本实验介绍的CMI线路码型是光线路码型。
以传输信道(或者说调制方式)来分,有基带信道的线路码型和承载(载波)信道的线路码型。
目前光纤传输系统大多采用基带直接调制光信号,对线路码型而言,仍输入基带码型。
以线路码型的电平数来分,有两电平码、三电平码、四电平码以及多电平码。
实验报告题目:CMI码编码译码实验报告组员通信901 李虹毅通信901 潘凯波通信901 韦磊组号A112012年2月目录一概述 (1)1.1 CMI码的简介 (1)1. 2 CMI码的优点 (1)二实验原理 (1)2.1 编码原理 (1) (2)2.2 译码原理 (2)三实验设计步骤(含程序及仿真图、测试图等) (3)3.1 实验模块程序 (3)3.2 综合电路图 (7)3.3 仿真波形 (8)四硬件调试下载 (8)五实验总结和心得体会 (9)一概述1.1 CMI码的简介1、CMI码是传号反转码的简称,它是一种应用于PCM四次群和光纤传输系统中的常用线路码型,具有码变换设备简单、有较多的电平跃变,含有丰富的定时信息,便于时钟提取,有一定的纠错能力等优点。
在高次脉冲编码调制终端设备中广泛应用作接口码型,在速率低于8 448 Kb/s的光纤数字传输系统中也被建议作为线路传输码型。
在CMI编码中,输入码字0直接输出01码型,较为简单。
对于输入为1的码字,其输出CMI码字存在两种结果00或11码,因而对输入1的状态必须记忆。
同时,编码后的速率增加一倍,因而整形输出必须有2倍的输入码流时钟。
在CMI解码端,存在同步和不同步两种状态,因而需进行同步。
同步过程的设计可根据码字的状态进行:因为在输入码字中不存在10码型,如果出现10码,则必须调整同步状态。
在该功能模块中,可以观测到CMI在译码过程中的同步过程。
1. 2 CMI码的优点1、不存在直流分量,并且具有很强的时钟分量,有利于在接收端对时钟信号进行恢复;2、具有检错能力,这是因为1码用00或11表示,而0码用01码表示,因而CMI码流中不存在10码,且无00与11码组连续出现,这个特点可用于检测CMI的部分错码。
二实验原理2.1 编码原理编码流程框图:m序列输入根据编码规则2位并行输出经过并串转换模块,并输出结束CMI编码规则见表4.2.1所示:因而在CMI编码中,输入码字0直接输出01码型,较为简单。
实验十六CMI 码的编解码实验实验内容1. 熟悉CMI码型变换编码实验。
2.熟悉CMI码型变换译码实验。
一、实验目的1.加深理解CMI码的编解码原理2.掌握CMI码的编解码方法3. 学习通过CPLD编程实现CMI码编译码实验二、实验电路工作原理在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位。
从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其它要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:①对各种代码的要求,期望将原始信息的符号编制成适合于传输用的码型,②对所传码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型选择,后一问题称为基带脉冲的选择。
这是两个既有独立性又有联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(又称线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:①能从其相应的基带信号中获取定时信息;②相应的基带信号无直流成分和只有很小的低频成分;③不受信息源统计特性的影响,即能适应于信息源的变化;④尽可能地提高传输码型的传输效率;⑤具有内在的检错能力,等等。
根据CCITT建议,在数字程控交换机中CMI码一般作为PCM四次群数字中继接口的码型,在光纤通信中CMI编码得到了广泛应用。
1.CMI码的编码原理:CMI码是传号反转码的简称,其编码规则是:‘1’码交替用“11”和“00”表示;“0”码用“01”表示。
因而对输入的“1”的状态必须记忆。
同时,编码后的速率增加一倍,因而整形必须有2倍的输入码流时钟。
实验-CMI码型变换实验实验CMI码型变换实验一、实验原理和电路说明在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1、对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2、对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1、能从其相应的基带信号中获取定时信息;2、相应的基带信号无直流成分和只有很小的低频成分;3、不受信息源统计特性的影响,即能适应于信息源的变化;4、尽可能地提高传输码型的传输效率;5、具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:CMI码、AMI、HDB3等等,下面将主要介绍CMI码。
根据CCITT建议,在程控数字交换机中CMI 码一般作为PCM四次群数字中继接口的码型。
在CMI码模块中,完成CMI的编码与解码功能。
CMI编码规则见表4.2.1所示:表4.2.1 CMI的编码规则输入码字编码结果0 011 00/11交替表示因而在CMI编码中,输入码字0直接输出01码型,较为简单。
对于输入为1的码字,其输出CMI码字存在两种结果00或11码,因而对输入1的状态必须记忆。
实验七AMI/HDB3/CMI码型变换实验一、实验原理在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1.对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2.对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1.能从其相应的基带信号中获取定时信息;2.相应的基带信号无直流成分和只有很小的低频成分;3.不受信息源统计特性的影响,即能适应于信息源的变化;4.尽可能地提高传输码型的传输效率;5.具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:AMI、HDB3、CMI码等等。
(一)AMI码AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
CMI码型变换实验实验报告_图文本科实验报告实验名称, CMI码型变换实验课程名称, 实验时间, 任课教师, 实验地点,原理验证实验教师,综合设计实验类型, 学生姓名,自主创新学号/班级, 组号,学院, 同组搭档, 专业, 成绩,1. CMI码编码规则测试(1)用示波器同时观测CMI编码器输入数据,TPX01,和输出编码数据,TPX05,。
观测时用TPX01同步,仔细调整示波器同步。
找出并画下一个m序列周期输入数据和对应编码输出数据波形。
根据观测结果,分析编码输出数据是否与编码理论一致。
(实验结果如图,(2)(实验结果如图,2. 1码状态记忆测量(1) 用KX02设置输出周期为15位的序列,用示波器同时观测CMI编码器输入数据,TPX01,和1码状态记忆输出,TPX03,。
观测时用TPX01同步,仔细调整示波器同步。
画下一个m序列周期输入数据和对应1码状态记忆输出数据波形。
根据观测结果,分析是否符合相互关系。
(实验结果如图,(2)将KX02设置在其他位置,重复上述测量。
画下测量波形,分析测量结果。
(实验结果如图,3. CMI码解码波形测试用示波器同时观测CMI编码器输入数据,TPX01,和CMI解码器输出数据,TPY07,。
观测时用TPX01同步。
验证CMI译码器能否正常译码,两者波形除时延外应一一对应。
(实验结果如图,4. CMI码编码加错波形观测跳线开关KX03是加错控制开关,当KX03设置在E_EN位置时,左端,,将在输出编码数据流中每隔一定时间插入1个错码。
TPX06是发端加错指示测试点,用示波器同时观测加错指示点TPX06和输出编码数据TPX05的波形,观测时用TPX06同步。
画下有错码时的输出编码数据,并分析接收端CMI译码器可否检测出。
(实验结果如图,5. CMI码检错功能测试首先将输入信号选择跳线开关KX01设置在Dt位置,左端,,将加错跳线开关KX03设置在E_EN位置,人为插入错码,模拟数据经信道传输误码。
CMI码形变换实验一.实验仪器1 JH5001通信原理综合实验系统2 20Mhz双踪示波器二.实验目的1 掌握CMI码的编码规则2 熟悉CMI编译码系统的特性三.实验原理编码框图如下:译码模块组成框图如下:四.数据整理1CMI码编码规则测试(1)观察CMI编码器的输入数据编码时钟和输入编码数据,波形如下:(上为TPX02,下为TPX01)根据图形观察输入数据在时钟的下降沿跳变。
(2)观察CMI编码器的输出数据编码时钟输入和编码数据输出,波形如下:(上为TPX04,下为TPX05)经过观察,输出数据在时钟的下降沿跳变,输入时钟是输出时钟的2倍。
(3)用示波器同时观察CMI编码器输入数据和输出编码数据。
波形如下:(上为TPX01,下为TPX05)由波形可知输入数据为0 1 0 1 1 1 0等编码数据为01 11 01 00 11 00 01等。
编码数据与编码理论一致。
(4)产生15位m序列重复(3)中的操作,波形如下:(上为TPX01,下为TPX05)由波形可知输入数据为0 0 0 1 0 0 1 1等编码数据为01 01 01 11 01 01 00 11等。
数据编码与编码理论一致。
2.1码状态记忆测量(1)用示波器同时观察CMI编码输入数据和1码状态记忆输出。
波形如下:(上为TPX01,下为TPX03)根据观测结果,符合相互关系。
(2)波形如下:(上为TPX01,下为TPX03)根据观测结果,符合相互关系。
3.CMI码解码波形观测。
波形如下:(上为TPX01,下为TPY07)根据波形测量,编解码之间的时延为输入时钟的1/3。
4.CMI码编码加错波形观测。
波形如下;(上为TPX06,下为TPX05)在正确编码过程中,编码数据中不可能出现0000,1111,10等编码,此编码出现则为错误编码。
再者,插入一个错码,插入的是一个1或0码,会造成编码数据流出现错误编码,对应编码数据查找,即可找出错码位置。
本实验系统根据光纤通信系统原理的主要知识点进行实验,结合电子技术和微处理器技术,针对光纤通信系统的典型应用可进行8项实验或示教,实验内容重点突出,内容丰富,有重点的培养实验者的动手能力。
实验系统总方框图如图1所示,它由以下7个部分单元电路组成:1、信号发生器单元2、模拟接口单元3、数字接口单元4、信号处理单元5、中央CPU控制单元6、光发端机单元7、光接收机单元每个单元电路的详细说明将在后面的实验中逐一介绍。
图2是实验系统的电原理图。
图3是实验系统元件分布图。
图1 实验系统总方框图图2 光纤通信原理实验系统分布图预习实验光纤通信原理实验系统信号发生器实验一、实验目的1、熟悉该光纤通信原理实验系统的电路组成。
2、熟悉光纤通信系统发送端信号产生的方法。
二、实验仪表1、直流稳压电源一台2、20MHz示波器一台3、三用表一台三、实验电路工作原理时钟信号是该光纤实验系统电路中的重要主成部分。
其方框图与电路原理图分别见1-1与图1-2所示。
图1-3是伪随机码产生电路。
图1-1 信号发生方框图各点波形说明如下:TPl01:2.048MHz的方波信号,作为PCM编译码电路的主时钟信号。
TPl02:1.024MHz的方波信号TPl03:128KHz的窄脉冲信号TPl04:8KHz的窄脉冲信号,作为PCM编译码电路的帧同步信号和脉冲波产生电路的波形。
W105:2KHz或1KHz的方波信号,作为正弦波产生电路的输入信号。
TPl07:8KHz或4KHz的方波信号,作为三角波产生电路的输入信号。
TPl09:64KHz的方波信号。
TP110:伪随机码产生电路输出波形,码型为000011101100101。
四、实验内容:1、用示波器测出各测量点波形,并对每一测量点的波形加以分析。
2、分析伪随机码发生器的工作原理并画出输出波形。
实验一码型变换(CMI)实验一、实验目的1、了解光纤通信采用的线路码型2、掌握CMI码的特点3、了解CMI的编解码实现方法二、预习要求1、阅读光纤通信系统原理的线路码型章节2、熟习相关电路的芯片功能,三、实验电路工作原理1、电路组成CMI码即为传号翻转码,“1”交替地用“00”和“11”表示,而“0”则固定用“01”表示,因此lbit变为2bit,故属于二电平的NRZ的1B2B码型,这种码的特点是有一定的纠错能力,易于实现,易于定时提取,因此在低速系统中选为传输码型,图1-1为CMI码与NRZ的关系图1-1 CMI码与NRZ码的转换关系a、编码电路编码电路接收来自信号源的单极性非归零码(NRZ)码,并把这种码型变换为CMI码送至光发送单元,其框图如图1-2 所示,图1-3是它的电原理图图1-2 CMI编码框图图1-3 CMI编码电原理图单极性码输入本单元后,首先用CLK同步,例如输入若是传号,则翻转输出,若是空号,则打开门开关,使时钟的反码送输出,本实验电路的伪随机码为15位的PN码,其其输入的信码序列如图1-4所示。
实验 5 CMI 编码器设计一、预备知识1. 预习 Altera 公司quartus 软件的使用方法。
2. 预习 FPGA 的基本编程技术。
3. 复习通信原理中关于 CMI 编码部分的知识。
二、实验目的1. 掌握 FPGA 中实现CMI 编码的方法。
三、实验仪器1.LTE-TX-02E 型通信原理实验箱一台2.计算机(带quartus II 开发环境)一台3.JTAG 下载电缆一根4.6 号板一块5.8 号板一块6.信号源板一块7.示波器一台四、实验原理CMI 编码规则见如下表所示:输入码字编码结果0 011 00/11 交替表示在CMI 编码中,输入码字0 直接输出01 码型,较为简单。
对于输入为1 的码字,其输出不仅与当前码字有关,还与前一个“1”码的输出有关,输出存在两种结果00 或11 码,交替出现。
在同步情况下,输出只对应三种有效码型,10 码型无效,因此可以根据这个特点进行检错。
同时,编码后的速率增加一倍。
五、设计要求与方法1. 设计要求从信号源接 8K 的PN 序列和8K 时钟到8 号板,对8 号板的FPGA 进行编程完成PN 序列的CMI 编码。
在程序中定义的端口是:输入:CLK_ENCODE :时钟输入端,由信号源CLK1 引入8k 的时钟信号。
RST :复位信号,高电平有效。
NRZ_IN : NRZ 码信号输入。
输出:CMI_OUT : CMI 编码输出。
说明:CLK_ENCODE : 8 号板的FPGA 的16 脚,插座的名称为“CLK”。
RST : 8 号板FPGA 39 脚,复位信号,S2 pn1 往上拨时,复位信号有效。
NRZ_IN : 8 号板的FPGA 的10 脚,插座的名称为“COMRXA”。
CMI_OUT : 8 号板的FPGA 的77 脚,插座的名称为“PCMOUTB”。
2. 设计方法首先将输入数据依据编码要求编成相应码字,0 码编成“01”,1 码交替成“00”或“11”,然后在原时钟上升沿和下降沿分别取高位和低位进行并串转换输出,就达到倍频输出的目的。
姓名:学号:班级:
第周星期第大节
实验名称:CMI码型变换
一、实验目的
1.掌握CMI编码规则。
2.掌握CMI编码和解码原理。
3.了解CMI同步原理和检错原理。
二、实验仪器
1.ZH5001A通信原理综合实验系统
2.20MHz双踪示波器
三、实验内容
1.CMI码编码规则测试
(1)7位m序列输入,无加错,CMI输出。
用示波器观测如下数据:
2.“1”码状态记忆测试
(2)7位m序列输入。
用示波器观测如下数据:
♦CMI编码输入数据(TPX01),1码状态记忆输出(TPX03)
3.CMI码编解码波形测试
用示波器观测如下数据:
4.CMI码编码加错波形观测
用示波器观测4个加错点加错时和不加错时的输出波形
加错无错
加错无错
加错无错
5.CMI码检错功能测试
(1)输入数据为Dt,人为加入错码。
用示波器观测如下波形
(2)输入数据为M,人为加入错码。
用示波器观测如下波形
♦加错指示点(TPX06),检测错码检测点(TPY05)
有些加错点对应的检错点都没有影响,说明输入M序列有些加错点没有
6.CMI译码同步观测
(1)输入Dt,不经过CMI编码。
错码。
用示波器观测如下波形
(2)输入Dt,经过CMI编码。
错码。
用示波器观测如下波形
♦检测错码检测点(TPY05)
经过CMI编码后处在同步状态,因为周期的输入加错,所以示波器中出
7.抗连0码性能测试
(1)输入全0。
用示波器观测如下波形
(2)看输入数据和输出数据是否相同。
用示波器观测如下波形
♦CMI编码输入数据(TPX01),输出编码数据(TPY07)
四、思考题
1.简述CMI码型的特点。
♦不含直流
♦有一定的检错能力
♦易实现
♦抗连0能力强
2.对于AMI,HDB3和CMI长连0码,哪种码型对于定时提取更有利?
CMI最有利于时钟同步,HDB3次之,而AMI对连0没有特殊处理,提取时钟能力最差。
3.CMI码收发码组是如何同步的?
CMI译码器在检测到错误时(收到10序列),会扣去一个时钟脉冲,这样就使得序列错了1位,实现同步。
4.CMI码用在什么地方?
CMI在光纤通信中有应用。