AMI码型变换实验
- 格式:doc
- 大小:3.56 MB
- 文档页数:11
通信原理实验报告班级:姓名:学号:指导老师:完成日期:实验一AMI码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图AMI编译码实验原理框图2、实验框图说明AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI 编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一AMI编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【256K 归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
3、此时系统初始状态为:编码输入信号为256K的PN序列。
(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
注:观察时注意码元的对应位置。
(2)用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
思考:译码过后的信号波形与输入信号波形相比延时多少?编译码延时小于3个码元宽度实验项目二 AMI 编译码(256KHz 非归零码实验)概述:本项目通过观测AMI 非归零码编译码相关测试点,了解AMI 编译码规则。
实验三AMI/HDB3码型变换实验一.实验目的1.了解二进制单极性码变换为 AMI/HDB3 码的编码规则;2.熟悉 HDB3 码的基本特征;3.熟悉 HDB3 码的编译码器工作原理与实现方法;4.根据测量与分析结果,画出电路关键部位的波形。
二.实验器材1.JH5001通信原理综合实验系统2.20MHz双踪示波器3.函数信号发生器三.实验内容1.AMI码编码规则验证将输入信号选择跳线开关KD01设置在M 位置(右端)、单/双极性码输出选择开关设置KD02设置在2_3 位置(右端)、AMI/HDB3编码开关KD03设置在AMI 位置(右端),使该模块工作在AMI码方式。
(1)、将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。
用TPD01同步。
同时观测输入数据TPD01与AMI输出双极性编码数据TPD05波形,如图3、1所示;同时观测输入数据TPD01与AMI 输出单极性编码数据TPD08波形,如图3、2所示;(2)、将CMI编码模块内的M序列类型选择跳线开关KX02 设置在1_2 位置(左端),产生15 位周期m 序列。
用TPD01同步。
同时观测输入数据TPD01与AMI 输出双极性编码数据TPD05波形,如图3、3所示;同时观测输入数据TPD01与AMI 输出单极性编码数据TPD08波形,如图3、4所示。
图3、1 7位m序列双极性图3、2 7位m序列单极性图3、3 15位m序列双极性图3、4 15位m序列单极性分析:经过对上述波形的分析,输入与输出基本满足了AMI码编码规则,+1与-1交替出现。
且7位m序列与15位m序列对应的波形基本一致,只就是15位m 序列波形宽度变窄。
2.HDB3码变换规则验证(1)、将KD01设置在M位置,KD02设置在2_3位置,KD03设置在HDB3位置;(2)、将KX02设置在2_3位置,观测TPD01与TPD05波形及TPD08波形,用TPD01同步,分别得到7位m序列双/单极性波形图,如图3、5与图3、6所示; (3)、将KX02设置在1_2位置,重复上述测试步骤,可得到15位m序列双/单极性波形图,如图3、7与图3、8所示;(4)、使输入数据端口悬空产生全1码(方法同1),重复上述测试步骤,可得到全1码双/单极性波形图,如图3、9所示;(5)、使输入数据为全0码(方法同1),重复上述测试步骤,可得到全0码双/单极性波形图,如图3、10与图3、11所示。
实验七AMI/HDB3/CMI码型变换实验一、实验原理在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1.对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2.对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1.能从其相应的基带信号中获取定时信息;2.相应的基带信号无直流成分和只有很小的低频成分;3.不受信息源统计特性的影响,即能适应于信息源的变化;4.尽可能地提高传输码型的传输效率;5.具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:AMI、HDB3、CMI码等等。
(一)AMI码AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
实验一AMI码型变换实验一、实验名称AMI码型变换实验二、实验目的了解几种常用的数字基带信号的特征和作用。
掌握AMI码的编译规则。
了解滤波法位同步在的码变换过程中的作用。
三、实验仪器主控&信号源模块2号数字终端&时分多址模块8号基带编译码模块13号同步模块示波器四、实验原理1.AMI编译码实验原理框图AMI编译码实验原理框图2.实验框图说明AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI 编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
五、实验步骤实验项目一AMI编译码(归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。
2、按表格所示进行连线。
3、运行仿真,开启所有模块的电源开关。
4、设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
5、此时系统初始状态为:编码输入信号为256K的PN序列。
6、实验操作及波形观测。
(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
(2)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5(AMI-A1),观察基带码元的奇数位的变换波形。
(3)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP6(AMI-B1),观察基带码元的偶数位的变换波形。
实验准备1:1.实验目的1)了解几种常用的数字基带信号的特征与作用。
2)掌握AMI码的编译规则。
3)了解滤波法位同步在的码变换过程中的作用。
2.实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干3.实验原理1)、AMI编译码实验原理框图AMI编译码实验原理框图2)、实验框图说明AMI编码规则就是遇到0输出0,遇到1则交替输出+1与-1。
实验框图中编码过程就是将信号源经程序后,得到AMI-A1与AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程就是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
4.实验步骤实验项目一AMI编译码(归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、关电,按表格所示进行连线。
1注:1、实验准备部分包括实验环境准备与实验所需知识点准备。
2、若就是单人单组实验,同组成员填无。
码,就是否能观察到恢复的位时钟信号,为什么?实验项目二AMI编译码(非归零码实验)概述:本项目通过观测AMI非归零码编译码相关测试点,了解AMI编译码规则。
1、保持实验项目一的连线不变。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【非归零码实验】。
将模块13的开关S3分频设置拨为0100,即提取256K同步时钟。
3、此时系统初始状态为:编码输入信号为256KHz的PN序列。
4、实验操作及波形观测。
参照项目一的256KHz归零码实验项目的步骤,进行相关测试。
一、实验过程记录2:非归零码实验基带信号+AMI输出基带信号+AMI_A12注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。
基带信号+AMI_B1基带信号+译码输出译码输出坏了基带信号+TH5编码输入时钟+译码输出时钟译码输出坏了归零码实验基带信号+AMI输出基带信号+AMI_A1基带信号+AMI_B1基带信号+译码输出译码输出坏了基带信号+TH5编码输入时钟+译码输出时钟译码输出坏了三、实验小结:实验报告成绩(百分制)__________ 实验指导教师签字:__________。
AMI/HDB3码型变换实验一.实验目的1.了解二进制单极性码变换为AMI/HDB3 码的编码规则;2.熟悉AMI码与HDB3 码的基本特征;3.熟悉HDB3 码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二.实验仪器1.JH7001 通信原理综合实验系统一台2.双踪示波器一台3.函数信号发生器一台三、实验原理AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的1 交替地变换为传输码的+1、–1、+1、–1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0 串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI 码,HDB3 码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI 码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1 或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V 符号表示(即+1 记为+V, –1记为–V)。
AMI/HDB3 码型变换实验一、实验目的了解二进制单极性码变换为AMI/HDB3 码的编码规则;熟悉HDB3 码的基本特征;熟悉HDB3 码的编译码器工作原理和实现方法; 根据测量和分析结果,画出电路关键部位的波形;二、实验内容AMI 码编码规则验证AMI 码译码和时延测量AMI 编码信号中同步时钟分量定性观测AMI 译码位定时恢复测量HDB3 码变换规则验证HDB3 码译码和时延测量HDB3 编码信号中同步时钟分量定性观测HDB3 译码位定时恢复测量三、实验仪器1.JH5001通信原理综合实验系统一台2.20MHz 双踪示波器一台四、原理与电路AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号和1(传号按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的 1 交替地变换为传输码的+1、-、+1、-1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分, 因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3AMI非归零码HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI 码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或-同极性的符号。
AMI码型变换实验报告一、实验目的:通过实验掌握数据信号的AMI码型变换原理和方法,了解其优点和缺点,并熟练掌握实现过程。
二、实验原理:AMI码型(Alternate Mark Inversion码型)是数据通信中常用的一种码型。
它的规则是:编号0以正脉冲表示,编号1以负脉冲表示,而编号0的相邻两个1之间的位置需要置零,这就是所谓的“交替出现”;三、实验仪器:信号发生器、示波器、电平判决电路、串行传输线路。
四、实验步骤:1.将信号发生器和示波器正确连接,并设置示波器触发源为信号发生器输出信号。
2.设置信号发生器,产生一组矩形波信号,频率为1kHz,幅度为5V,并将输出的电平切换为AMI码型。
3.将信号发生器的输出信号经过电平判决电路,观察并记录判决电路的输出结果。
4.将示波器连接至电平判决电路的输出端口,观察并记录示波器上的波形。
5.将判决电路的输出经过串行传输线路,利用示波器观察并记录在传输线路上的波形。
五、实验结果:经过上述实验步骤之后,我们得到了以下实验结果:1.经过电平判决电路后,在电平判决电路的输出端口得到了经过判决后的二进制数据,即AMI码型的数字信号;2.经过示波器的展示,我们可以清晰地观察到AMI码型的波形特点,即交替的正负脉冲;3.经过串行传输后,在传输线路上得到了经过信号传输后的波形,也是交替出现的正负脉冲。
六、实验总结:1.AMI码型的交替正负脉冲特点实现了时钟同步性能的提高,避免了NRZ码型可能出现的时钟漂移问题;2.AMI码型相比NRZ码型可以提高线路的利用率,因为NRZ码型在连续1的情况下没有电平变化,无法表征有效数据;3.实验结果表明,AMI码型通过交替出现的正负脉冲实现了数据的可靠传输,波形特点明显、易于辨识。
七、实验心得:通过这次AMI码型变换实验,我进一步了解了数据信号的不同编码方式,对AMI码型的原理和方法有了更深入的了解。
通过亲手操作实现了AMI码型的转换,增强了自己的实践能力。
实验一AMI码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征与作用。
2、掌握AMI码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图AMI编译码实验原理框图2、实验框图说明AMI编码规则就是遇到0输出0,遇到1则交替输出+1与-1。
实验框图中编码过程就是将信号源经程序处理后,得到AMI-A1与AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程就是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一AMI编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、关电,按表格所示进行连线。
源端口目的端口连线说明信号源:PN 模块8:TH3(编码输入-数据) 基带信号输入信号源:CLK 模块8:TH4(编码输入-时钟) 提供编码位时钟模块8:TH11(AMI编码输出) 模块8:TH2(AMI译码输入) 将数据送入译码模块模块8:TH5(单极性码) 模块13:TH7(数字锁相环输入) 数字锁相环位同步提取模块13:TH5(BS2) 模块8:TH9(译码时钟输入) 提供译码位时钟2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【256K 归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
3、此时系统初始状态为:编码输入信号为256K的PN序列。
(1)用示波器分别观测编码输入的数据TH3与编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
实验二AMI码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征与作用。
2、掌握AMI码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图AMI编译码实验原理框图2、实验框图说明AMI编码规则就是遇到0输出0,遇到1则交替输出+1与-1。
实验框图中编码过程就是将信号源经程序处理后,得到AMI-A1与AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程就是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一AMI编译码(归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、关电,按表格所示进行连线。
源端口目的端口连线说明信号源:PN 模块8:TH3(编码输入-数据) 基带信号输入信号源:CLK 模块8:TH4(编码输入-时钟) 提供编码位时钟模块8:TH11(AMI编码输出) 模块8:TH2(AMI译码输入) 将数据送入译码模块模块8:TH5(单极性码) 模块13:TH7(数字锁相环输入) 数字锁相环位同步提取模块13:TH5(BS2) 模块8:TH9(译码时钟输入) 提供译码位时钟213的开关S3分频设置拨为0011,即提取512K同步时钟。
3、此时系统初始状态为:编码输入信号为256K的PN序列。
4、实验操作及波形观测。
(1)用示波器分别观测编码输入的数据TH3与编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
(2)保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5 (AMI-A1),观察基带码元的奇数位的变换波形。
实验三 AMI/HDB3码型变换预习报告一、实验原理1.A MI码AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T码型。
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
2.H DB3码HDB3码是一种有代表性的改进AMI码,它保持了AMI码的优点,同时也克服了其缺点。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V符号表示(即+1记为+V, –1记为–V)。
为使附加V符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻V符号也应极性交替。
这一点,当相邻符号之间有奇数个非0符号时,则是能得到保证的;当有偶数个非0符号时,则就得不到保证,这时再将该小段的第1个0变换成+B或–B符号的极性与前一非0符号的相反,并让后面的非0符号从V符号开始再交替变化。
通信原理实验报告班级:姓名:学号:指导老师:完成日期:实验一AMI码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图AMI编译码实验原理框图2、实验框图说明AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI 编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一AMI编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【256K 归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
3、此时系统初始状态为:编码输入信号为256K的PN序列。
(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
注:观察时注意码元的对应位置。
(2)用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
思考:译码过后的信号波形与输入信号波形相比延时多少?编译码延时小于3个码元宽度实验项目二AMI编译码(256KHz非归零码实验)概述:本项目通过观测AMI非归零码编译码相关测试点,了解AMI编译码规则。
.AMI/HDB3码型变换实验一.实验目的1.了解二进制单极性码变换为AMI/HDB3码的编码规则;2.熟悉AMI码与HDB3码的基本特征;3.熟悉HDB3码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二.实验仪器1.JH7001通信原理综合实验系统一台2.双踪示波器一台3.函数信号发生器一台三、实验原理AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T码文档Word.型。
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V符号表示(即+1记为+V,–1记为–V)。
AMI码型变换实验报告实验一 AMI码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、了解滤波法位同步在的码变换过程中的作用。
二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图AMI编译码实验原理框图2、实验框图说明AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤实验项目一 AMI编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证AMI编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【AMI编译码】→【256K 归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
3、此时系统初始状态为:编码输入信号为256K的PN序列。
(1)用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
注:观察时注意码元的对应位置。
(2)用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
思考:译码过后的信号波形与输入信号波形相比延时多少?编译码延时小于3个码元宽度实验项目二 AMI编译码(256KHz非归零码实验)概述:本项目通过观测AMI非归零码编译码相关测试点,了解AMI编译码规则。
1、保持实验项目一的连线不变。
AMI码型变换-10AMI/HDB3码型变换实验一.实验目的1.了解二进制单极性码变换为AMI/HDB3 码的编码规则;2.熟悉AMI码与HDB3 码的基本特征;3.熟悉HDB3 码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二.实验仪器1.JH7001 通信原理综合实验系统一台2.双踪示波器一台3.函数信号发生器一台三、实验原理AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的1 交替地变换为传输码的+1、–1、+1、–1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0 串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI 码,HDB3 码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI 码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1 或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V 符号表示(即+1 记为+V, –1记为–V)。
目录1 技术要求 (1)2 基本原理 (1)2.1 基带信号 (1)2.2 AMI码 (1)3 设计方案及功能分析 (2)3.1 方案一 (2)3.2 方案二 (3)3.3 方案比较 (4)4 实现方案 (4)5 硬件电路调试 (5)6 结论 (6)7 心得体会 (6)8 参考文献 (7)附录 (8)1安装调试实验报告 (8)1.1安装调试过程记录 (8)1.2测试波形记录及分析 (8)1.3 调试报告小结 (9)2 CPLD设计原理图 (9)3 外围电路 (10)4 思考题 (10)基带码型变换设计——AMI码码型变换1 技术要求1)设计AMI码的编译码电路;2)输入信号为24位的周期NRZ码;3)编译码延时小于3个码元宽度。
2 基本原理2.1 基带信号在实际的基带传输系统中,并不是所有的基带波形都适合在信道中传输。
例如含有丰富直流和低频分量获得单极性基带波形就不适宜在低频传输特性差的信道中传输,因为这有可能造成信号严重畸变。
又如,当消息代码中包含长串的连续“1”或“0”符号时,非归零波形呈现出连续的固定电平,因而无法获取信息。
单极性归零码在传送连“0”时,也存在同样的问题。
因此,对传输用的基带信号主要有以下两个方面的要求:1)将信息符号编织成适合于传输用的码型;2)对所选码型的电波形, 必须适宜在信道中传输。
前者属于传输码型的选择,后者是基带脉冲的选择。
2.2 AMI码AMI(Alternative Mark Inversion)码的全称是传号交替反转码,其编码规则是将消息码中的“1”(传号)交替的变换为“+1”和“-1”,而“0”(空号)保持不变。
AMI码对应的波形是具有正、负、零三种电平的脉冲序列。
它可以看成是单极性波形的变形,即“0”仍对应零电平,而“1”交替对应正负电平。
AMI码成为小常用的传输码型之一,其优点是,没有直流分量,且高、低频分量少,都能集中在频率为1/2码速处;编译码电路简单,且可利用传号极性交替这一规律观察误码情况;如果它是AMI-RZ波形,接收后只要全波整流,就可变为单极性RZ波形,冲中可以提取定时分量。
实验准备1:
1.实验目的
1)了解几种常用的数字基带信号的特征和作用。
2)掌握AMI码的编译规则。
3)了解滤波法位同步在的码变换过程中的作用。
2.实验器材
1、主控&信号源、2号、8号、13号模块各一块
2、双踪示波器一台
3、连接线若干
3.实验原理
1)、AMI编译码实验原理框图
AMI编译码实验原理框图
2)、实验框图说明
AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验框图中编码过程是将信号源经程序处得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程是将AMI码信号送入
到电平逆变换电路,再通过译码处理,得到原始码元。
4.实验步骤
实验项目一AMI编译码(归零码实验)
概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译
1注:1、实验准备部分包括实验环境准备和实验所需知识点准备。
2、若是单人单组实验,同组成员填无。
2注:实验过程记录要包含实验目的、实验原理、实验步骤,页码不够可自行添加。
基带信号+AMI输出
基带信号+AMI_A1
基带信号+AMI_B1
基带信号+译码输出
译码输出坏了
基带信号+TH5
编码输入时钟+译码输出时钟
译码输出坏了
归零码实验
基带信号+AMI输出
基带信号+AMI_A1
基带信号+AMI_B1
基带信号+译码输出
译码输出坏了
基带信号+TH5
编码输入时钟+译码输出时钟
译码输出坏了
三、实验小结:
实验报告成绩(百分制)__________ 实验指导教师签字:__________ 如有侵权请联系告知删除,感谢你们的配合!
.
如有侵权请联系告知删除,感谢你们的配合!
精品。