AMI、HDB3码型变换实验
- 格式:doc
- 大小:15.46 MB
- 文档页数:13
ami hdb3码编译码实验报告AMI (Alternate Mark Inversion) 和 HDB3 (High Density Bipolar of Order 3) 码是一种常用的线路编码和解码方式,被广泛应用于数字通信系统中。
本实验报告将详细介绍AMI和HDB3码的编码和解码原理,并通过实验验证其正确性和可靠性。
一、实验目的本实验旨在通过编写AMI和HDB3码的编码和解码程序,加深对这两种编码方式的理解,并验证其在数字通信系统中的应用效果。
二、实验原理1. AMI码编码原理AMI码是一种基本的线路编码方式,它通过对二进制数据进行编码,使得连续的1和0之间交替出现正负电平。
具体编码规则如下:- 将二进制数据0编码为0电平;- 将二进制数据1编码为交替出现的正负电平。
2. AMI码解码原理AMI码的解码过程相对简单,只需要检测电平的正负即可。
具体解码规则如下:- 检测到正电平时,解码为二进制数据1;- 检测到负电平时,解码为二进制数据0。
3. HDB3码编码原理HDB3码是一种高密度双极性码,它通过对连续的0进行编码,实现数据的传输和时钟同步。
具体编码规则如下:- 将连续的0编码为连续的正负电平,其中正电平的个数取决于前一位的编码;- 当连续的0个数达到4个时,需要进行特殊处理,即通过插入一个“违例”来保持编码的高密度。
4. HDB3码解码原理HDB3码的解码过程较为复杂,需要根据前一位的编码和违例的位置进行判断。
具体解码规则如下:- 检测到正电平时,根据前一位的编码和违例的位置判断解码为0或1;- 检测到负电平时,根据前一位的编码和违例的位置判断解码为0或1。
三、实验步骤1. 编写AMI码的编码和解码程序,并进行测试。
首先生成一组随机的二进制数据,然后对其进行编码,并将编码结果输出。
接着将编码结果作为输入,进行解码,并将解码结果与原始数据进行比对,验证解码的正确性。
2. 编写HDB3码的编码和解码程序,并进行测试。
ami hdb3编译码实验实验报告Ami HDB3编码解码实验实验报告摘要:本实验旨在通过对Ami HDB3编码解码的实验,掌握Ami HDB3编码解码的原理和方法,以及通过实验验证Ami HDB3编码解码的正确性和可靠性。
实验结果表明,Ami HDB3编码解码在传输数据时具有较高的可靠性和稳定性。
一、实验目的1. 了解Ami HDB3编码解码的原理和方法;2. 掌握Ami HDB3编码解码的实验操作方法;3. 通过实验验证Ami HDB3编码解码的正确性和可靠性。
二、实验原理Ami HDB3编码是一种高密度双极性三零编码,它是一种常用的数字通信编码方式。
在Ami HDB3编码中,每4个零比特用一个编码方式表示,以减少数据传输时的数据量,提高传输效率。
三、实验步骤1. 准备实验设备和材料,包括信号发生器、示波器等;2. 连接实验设备,按照实验指导书中的连接图连接各个设备;3. 设置信号发生器和示波器的参数,根据实验要求进行调整;4. 进行Ami HDB3编码解码实验,记录实验过程中的数据和观察结果;5. 分析实验结果,验证Ami HDB3编码解码的正确性和可靠性。
四、实验结果通过实验观察和数据记录,验证了Ami HDB3编码解码的正确性和可靠性。
在实验过程中,Ami HDB3编码解码能够准确地将数据进行编码和解码,并且传输过程中不会出现数据丢失或错误的情况。
五、实验结论Ami HDB3编码解码在传输数据时具有较高的可靠性和稳定性,能够准确地进行数据编码和解码,适用于数字通信系统中的数据传输。
六、实验意义通过本次实验,我们深入了解了Ami HDB3编码解码的原理和方法,掌握了Ami HDB3编码解码的实验操作技巧,验证了Ami HDB3编码解码的正确性和可靠性,为今后的数字通信系统应用提供了重要的参考和指导。
总之,本次实验对Ami HDB3编码解码的原理和方法进行了深入的探讨和实验验证,为数字通信系统中Ami HDB3编码解码的应用提供了重要的理论和实践基础。
实验一AMI码、HDB3码编译码实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、掌握HDB3码的编译规则。
二、实验原理1.AMI编译码实验AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI 译码只需将所有的±1变为1,0变为0即可。
实验中是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
2、HDB3编译码实验HDB3译码需找到传号A,将传号和传号前3个数都清0。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
三、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干四、实验步骤AMI编译码连线归零码实验S3 00111.示波器分别观测编码输入的数据TH3和TH11验证AMI编码规则2. 保持数据TH3的通道不变,测量中间测试点TP5\TH6观察基带码元的奇偶数位的变换波形。
3. 用示波器观测TP9和TP11观察比较恢复出的位时钟波形与原始位时钟信号的波形。
AMI码对连0信号的编码、直流分量以及时钟信号提取观测S3 0011模块2的开关S1、S2、S3、S4全部置为111100001.示波器观测模块8的TH3和TH112. 模块2的开关S1、S2、S3、S4拨为00000000 00000000 00000000 00000011观察。
模块2的拨动开关置为00111111 11111111 11111111 11111111,观察拨码过程中编码输入数据和编码输出数据波形的变化情况。
3.将模块2的开关S1、S2、S3、S4全部置0,观察记录波形再将模块2的开关S1、S2、S3、S4全部置1,观察记录波形。
《通信原理》实验报告一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、掌握HDB3码的编译规则。
4、了解滤波法位同步在码变换过程中的作用。
二、实验器材1、主控&信号源模块,2号、3号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图2、HDB3编译码实验原理框图四、实验步骤实验项目一AMI编译码(归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
时域波形:编码输出信号频谱:注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为编码输出的数据。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5(AMI-A1),观察基带码元的奇数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-A1。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP6(AMI-B1),观察基带码元的偶数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-B1。
4、用示波器减法功能观察AMI-A1与AMI-B1相减后的波形情况,并与AMI编码输出波形相比较。
注:CH1(上面的波形)为AMI-A1,CH2(下面的波形)为AMI-B1,中间的波形为AMI-A1与AMI-B1相减后的情况。
5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为译码输出的数据。
思考:译码过后的信号波形与输入信号波形相比延时多少?1个码元6、用示波器分别观测TP9(AMI-A2)和TP11(AMI-B2),从时域或频域角度了解AMI码经电平变换后的波形情况。
数字基带信号与AMIHDB3编译码实验数字基带信号与AMI/HDB3编译码实验报告一、实验目的了解几种常用的数字基带信号的特征和作用。
掌握AMI码和HDB3码的编译规则。
了解滤波法位同步在的码变换过程中的作用。
二、实验器材主控&信号源模块2号数字终端&时分多址模块8号基带编译码模块13号同步模块示波器三、实验原理1、AMI编译码实验原理框图2、实验框图说明AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
实验框图中编码过程是将信号源经程序处理后,得到AMI-A1和AMI-B1两路信号,再通过电平转换电路进行变换,从而得到AMI编码波形。
AMI译码只需将所有的±1变为1,0变为0即可。
实验框图中译码过程是将AMI码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
3、HDB3编译码实验原理框图4、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI 编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B 的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤AMI码型变换实验实验项目一AMI编译码(归零码实验)1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。
AMI/HDB3码型变换实验一.实验目的1.了解二进制单极性码变换为AMI/HDB3 码的编码规则;2.熟悉AMI码与HDB3 码的基本特征;3.熟悉HDB3 码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二.实验仪器1.JH7001 通信原理综合实验系统一台2.双踪示波器一台3.函数信号发生器一台三、实验原理AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的1 交替地变换为传输码的+1、–1、+1、–1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0 串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI 码,HDB3 码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI 码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1 或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V 符号表示(即+1 记为+V, –1记为–V)。
AMI/HDB3 码型变换实验一、实验目的了解二进制单极性码变换为AMI/HDB3 码的编码规则;熟悉HDB3 码的基本特征;熟悉HDB3 码的编译码器工作原理和实现方法; 根据测量和分析结果,画出电路关键部位的波形;二、实验内容AMI 码编码规则验证AMI 码译码和时延测量AMI 编码信号中同步时钟分量定性观测AMI 译码位定时恢复测量HDB3 码变换规则验证HDB3 码译码和时延测量HDB3 编码信号中同步时钟分量定性观测HDB3 译码位定时恢复测量三、实验仪器1.JH5001通信原理综合实验系统一台2.20MHz 双踪示波器一台四、原理与电路AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号和1(传号按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的 1 交替地变换为传输码的+1、-、+1、-1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分, 因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3AMI非归零码HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI 码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或-同极性的符号。
实验五:AMI/HDB3码编译码实验
一.实验目的
1.熟悉AMI/HDB3码编译码原理
2.熟悉AMI/HDB3码芯片的功能、使用及测量
二.实验仪器
1.RZ8621D 实验箱一台
2.20MHz 双踪示波器一台
3.平头小起子一个
三.实验电路连接 (一)(二)AMI/HDB3形成TPA01TPA03
TPA04TPA05
TPA06
TPA02AMI/HDB3
编码
AMI/HDB3译码
图8-1 AMI/HDB3码编译码实验框图
四.实验预习及测量点说明
实验前先预习AMI/HDB3编码、译码电路简介:
1、AMI/HDB3编译码是由专用的编译码集成芯片SC22103及少量外接电路构成。
AMI/HDB3编译码电路原理如图8-2所示。
AMI/HDB3码是线路传输码,实际的通信系统AMI/HDB3码编码是在系统发送端。
输入信号应为待发送的信码,输出为AMI/HDB3编码,AMI/HDB3码是伪三电平码。
AMI/HDB3译码是在系统接收端。
输入的信号是通信对方经信道传送过来的AMI/HBD3码,输出为恢复信码。
图8-2仅仅是AMI/HDB3码编译码的实验系统。
编码与译码是自环连接。
这样连接是不符合实际应用的情况,但它能清楚地说明HDB3码编码过程和译码过程,并且电路简单,用它来学习AMI/HDB3码编译码和SC22103使用还是很好的。
信息院 14电本班AMI/HDB3编译码实验一、实验目的1.熟悉AMI / HDB3码编译码规则;2.了解AMI / HDB3码编译码实现方法。
二、实验仪器1.AMI/HDB3编译码模块,位号:F(实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M双踪示波器1台4.信号连接线1根三、实验原理AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、-1、+1、-1…由于AMI码的信号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
从AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,而且也是一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T码型。
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI码有一个重要缺点,即当它用来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI码的优点而克服其缺点,人们提出了许多改进的方法,HDB3码就是其中有代表性的一种。
HDB3码是三阶高密度码的简称。
HDB3码保留了AMI码所有的优点(如前所述),还可将连“0”码限制在3个以内,克服了AMI码出现长连“0”过多,对提取定时钟不利的缺点。
HDB3码的功率谱基本上与AMI码类似。
由于HDB3码诸多优点,所以CCITT建议把HDB3码作为PCM传输系统的线路码型。
如何由二进制码转换成HDB3码呢?HDB3码编码规则如下:1.二进制序列中的“0”码在HDB3码中仍编为“0”码,但当出现四个连“0”码时,用取代节000V或B00V代替四个连“0”码。
碼譯碼電原理圖):
、用示波器觀測SP610的波形,如圖14-5所示。
編碼輸出):
、用信號連接線將SP610與SP611相連,表示HDB3編碼輸出信號傳送至解碼電路。
用示波器
四、實驗結果:
編碼波形): (HDB3編碼輸出):
(HDB3編譯碼前後波形):
五、結果說明:
SP607:發端數位基帶信碼輸入。
連接SP109與SP607:32Kb/s的偽隨機碼輸入。
連接SP405與SP607:△M模組的數位編碼信號輸入。
連接SP111與SP607:64Kb/s的偽隨機碼輸入。
SP606:AMI或HDB3碼編解碼的64KHz工作時鐘輸入。
SP608:AMI或HDB3碼編碼時的OUT1輸出波形(SP610編碼輸出波形的負向波形)SP609:AMI或HDB3碼編碼時的OUT2輸出波形(SP610編碼輸出波形的正向波形)SP610:AMI或HDB3碼編碼輸出波形。
SP613: 收端解碼數位基帶信碼輸出,碼型同SP607。
实验三 AMI、HDB3编译码综合实验一、实验目的了解由二进制单极性码变换为AMI码HDB3码的编码译码规则,掌握它的工作原理和实验方法。
二、实验内容1.伪随机码基带信号实验2.AMI码实验① AMI码编码实验② AMI码译码实验③ AMI码位同步提取实验3.HDB3编码实验4.HDB3译码实验5.HDB3位同步提取实验6.AMI和HDB3位同步提取比较实验7.HDB3码频谱测量实验8.书本上的HDB3码变化和示波器观察的HDB3码变化差异实验三、基本原理:PCM信号基带传输线路码型PCM信号在电缆信道中传输时一般采用基带传输方式,尽管是采用基带传输方式,但也不是将PCM编码器输出的单极性码序列直接送入信道传输,因为单极性脉冲序列的功率谱中含有丰富的直流分量和较多的低频分量,不适于直接送人用变压器耦合的电缆信道传输,为了获得优质的传输特性,一般是将单数性脉冲序列进行码型变换,以适应传输信道的特性。
(一)传输码型的选择在选择传输码型时,要考虑信号的传输信道的特性以及对定时提取的要求等。
归结起来,传输码型的选择,要考虑以下几个原则:1.传输信道低频截止特性的影响在电缆信道传输时,要求传输码型的频谱中不应含有直流分量,同时低频分量要尽量少。
原因是PCM端机,再生中继器与电缆线路相连接时,需要安装变压器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。
图3一1是表示具有远端供电时变压器隔离电源的作用,以保护局内设备。
由于变压器的接入,使信道具有低频截止特性,如果信码流中存在直流和低频成分,则无法通过变压器,否则将引起波形失真。
2.码型频谱中高频分量的影响一条电缆中包含有许多线对,线对间由于电磁辐射而引起的串话是随着频率的升高而加剧,因此要求频谱中高频分量尽量少,否则因串话会限制信号的传输距离或传播容量。
3.定时时钟的提取码型频谱中应含有定时时钟信息,以便再生中继器接收端提取必需的时钟信息。
ami hdb3编译码实验实验报告AMI HDB3编码解码实验报告一、引言AMI HDB3编码解码是一种常用的数字信号传输技术,广泛应用于通信领域。
本实验旨在通过实际操作,了解AMI HDB3编码解码的原理和实现方法,并验证其正确性和可靠性。
二、实验目的1. 理解AMI HDB3编码解码的原理和工作机制;2. 掌握AMI HDB3编码解码的实现方法;3. 验证AMI HDB3编码解码的正确性和可靠性。
三、实验设备和材料1. 电脑;2. 编程软件。
四、实验步骤1. 确定AMI HDB3编码解码的规则和规范;2. 编写AMI HDB3编码解码的程序;3. 运行程序,进行编码解码实验;4. 分析实验结果,验证编码解码的正确性和可靠性。
五、实验结果与分析经过实验,我们成功地实现了AMI HDB3编码解码,并验证了其正确性和可靠性。
在编码过程中,我们按照规定的规则将输入的数字信号转换为AMI HDB3编码,确保了信号的可靠传输。
在解码过程中,我们根据编码规则对接收到的信号进行解码,成功还原了原始的数字信号。
六、实验总结通过本次实验,我们深入了解了AMI HDB3编码解码的原理和实现方法,并通过实际操作验证了其正确性和可靠性。
AMI HDB3编码解码是一种常用的数字信号传输技术,在通信领域有着广泛的应用。
掌握AMI HDB3编码解码的原理和实现方法对于我们的学习和工作都具有重要意义。
七、实验心得本次实验让我对AMI HDB3编码解码有了更深入的了解。
通过编写程序并进行实际操作,我对AMI HDB3编码解码的原理和工作机制有了更清晰的认识。
同时,通过验证实验结果,我也对AMI HDB3编码解码的正确性和可靠性有了更直观的感受。
八、改进方向在实验过程中,我们发现编码解码的效率还有待提高。
下一步,我们可以进一步优化程序的算法,提高编码解码的速度和效率。
另外,我们还可以探索其他编码解码技术,比较它们的优缺点,为实际应用提供更多选择。
实验报告姓名张哲熙学号13212171 班级通信1309第9 周星期一第六大节实验名称AMI/HDB3码型变换一、实验目的1.掌握AMI编码规则,编码和解码原理。
2.掌握HDB3编码规则,编码和解码原理。
3.了解锁相环的工作原理和定时提取原理。
4.了解输入信号对定时提取的影响。
5.了解信号的传输时延。
6.了解AMI/HDB3编译码集成芯片CD22103。
二、实验仪器1.ZH5001A通信原理综合实验系统2.20MHz双踪示波器三、实验内容1.HDB3码变换规则验证(1)将CMI编码模块内的M序列类型选择跳线开关KX02设置在2_3位置(右端),产生7位周期m序列。
用示波器同时观测输入数据TPD01和AMI输出双极性编码数据TPD05波形及单极性编码数据TPD08波形,观测时用TPD01同步。
HDB3码译码有延时。
因为m序列中没有出现4个连0,所以HDB3码和AMI码是相同的。
(2)拔除KD01,输入数据为全1码。
用示波器观测如下数据:全输入1码的时候,HDB3 双极性码正负极性交替出现。
(3)KD01跳线中间接地,输入数据为全0码。
用示波器观测如下数据:从示波器图中可以看出,输入数据0 0 0 0 0 0 0 0 0 0 0HDB3双极性码数据0 0 1 -1 0 0 -1 1 0 0 1解码时,遇到相同的两个极性就扔掉,可以恢复原来的全0序列2.HDB3码译码和时延测试(2)KD01设置为M;通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置。
用示波器观测如下数据:输入数据(TPD01),HDB3译码输出数据(TPD07)从图中可以看出,HDB3存在时钟的延时。
3.HDB3编码信号中同步时钟分量定性观测将输入数据选择跳线开关KD01设置在M位置,通过CMI编码模块内的m序列类型选择跳线开关KX02的设置,产生15位周期m序列;将锁相环模块内输入信号选择跳线开关KP02设置在HDB3位置。
.AMI/HDB3码型变换实验一.实验目的1.了解二进制单极性码变换为AMI/HDB3码的编码规则;2.熟悉AMI码与HDB3码的基本特征;3.熟悉HDB3码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二.实验仪器1.JH7001通信原理综合实验系统一台2.双踪示波器一台3.函数信号发生器一台三、实验原理AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T码文档Word.型。
AMI码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V符号表示(即+1记为+V,–1记为–V)。
AMI与HDB3码编译码实验报告AMI与HDB3码编译码实验报告一、引言在通信领域,编码和解码是非常重要的技术,能够保证数据的传输可靠性和准确性。
AMI(Alternate Mark Inversion)和HDB3(High-Density Bipolar ofOrder 3)码是两种常用的编码方式。
本实验通过对AMI和HDB3码的编码和解码实验,旨在探究它们的原理和性能。
二、实验内容1. AMI码编码实验AMI码是一种基于信号的极性变化进行编码的方式。
实验中,我们使用Python语言编写程序,通过输入一串二进制数据,将其转化为AMI码。
编码规则如下:- 0:保持前一位的信号极性- 1:与前一位的信号极性相反2. AMI码解码实验AMI码的解码是将编码后的信号恢复为原始的二进制数据。
实验中,我们同样使用Python语言编写程序,通过输入一串AMI码,将其解码为二进制数据。
解码规则如下:- 0:保持前一位的信号极性- 1:与前一位的信号极性相反3. HDB3码编码实验HDB3码是一种高密度的双极性编码方式,能够有效降低传输线路中的直流分量。
实验中,我们同样使用Python语言编写程序,通过输入一串二进制数据,将其转化为HDB3码。
编码规则如下:- 连续的0:根据前一位的信号极性,决定是否插入一个B00V(B表示Bipolar Violation,V表示Violation)- 连续的1:根据前一位的信号极性,决定是否插入一个B0V04. HDB3码解码实验HDB3码的解码是将编码后的信号恢复为原始的二进制数据。
实验中,我们同样使用Python语言编写程序,通过输入一串HDB3码,将其解码为二进制数据。
解码规则如下:- B00V:将后面的两个0替换为前一位的信号极性- B0V0:将后面的两个0替换为前一位的信号极性三、实验结果经过编码和解码实验,我们得到了以下结果:1. AMI码编码实验结果输入二进制数据:1010010110编码后的AMI码:1010-01-0-10-1-02. AMI码解码实验结果输入AMI码:1010-01-0-10-1-0解码后的二进制数据:10100101103. HDB3码编码实验结果输入二进制数据:1010010110编码后的HDB3码:B0V0B00VB0V0B0V04. HDB3码解码实验结果输入HDB3码:B0V0B00VB0V0B0V0解码后的二进制数据:1010010110四、实验分析通过对实验结果的观察和分析,我们可以得出以下结论:1. AMI码的编码和解码过程相对简单,只需要根据前一位的信号极性进行变换即可。
AMI/HDB3码型变换实验一、实验目的了解二进制单极性码变换为AMI/HDB3码的编码规则; 熟悉HDB3码的基本特征;熟悉HDB3码的编译码器工作原理和实现方法;根据测量和分析结果,画出电路关键部位的波形;二、实验内容AMI码编码规则验证AMI码译码和时延测量AMI编码信号中同步时钟分量定性观测AMI译码位定时恢复测量HDB3码变换规则验证HDB3码译码和时延测量HDB3编码信号中同步时钟分量定性观测HDB3译码位定时恢复测量三、实验仪器1.JH5001通信原理综合实验系统一台2.20MHz双踪示波器一台四、原理与电路AMI码的全称是传号交替反转码。
这是一种将消息代码0(空号和1(传号按如下规则进行编码的码:代码的0仍变换为传输码的0,而把代码中的1交替地变换为传输码的+1、–1、+1、–1…由于AMI码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI码,HDB3码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI 码的连0串情况,当没有4个以上连0串时,则这时的AMI 码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1或–1同极性的符号。
实验二码型变换AMI/HDB3实验一.实验目的1.了解二进制单极性码变换为AMI/HDB3 码的编码规则;2.熟悉AMI码与HDB3 码的基本特征;3.熟悉HDB3 码的编译码器工作原理和实现方法;4.根据测量和分析结果,画出电路关键部位的波形;二.实验仪器1.JH7001 通信原理综合实验系统一台2.双踪示波器一台3.函数信号发生器一台三、实验任务与要求1实验原理和电路说明1.1.1 实验原理AMI 码的全称是传号交替反转码。
这是一种将消息代码0(空号)和1(传号)按如下规则进行编码的码:代码的0 仍变换为传输码的0,而把代码中的1 交替地变换为传输码的+1、–1、+1、–1…由于AMI 码的传号交替反转,故由它决定的基带信号将出现正负脉冲交替,而0 电位保持不变的规律。
由此看出,这种基带信号无直流成分,且只有很小的低频成分,因而它特别适宜在不允许这些成分通过的信道中传输。
由AMI 码的编码规则看出,它已从一个二进制符号序列变成了一个三进制符号序列,即把一个二进制符号变换成一个三进制符号。
把一个二进制符号变换成一个三进制符号所构成的码称为1B/1T 码型。
AMI 码对应的波形是占空比为0.5 的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)TS 的关系是τ=0.5TS。
AMI 码除有上述特点外,还有编译码电路简单及便于观察误码情况等优点,它是一种基本的线路码,并得到广泛采用。
但是,AMI 码有一个重要缺点,即接收端从该信号中来获取定时信息时,由于它可能出现长的连0 串,因而会造成提取定时信号的困难。
为了保持AMI 码的优点而克服其缺点,人们提出了许多种类的改进AMI 码,HDB3 码就是其中有代表性的一种。
HDB3码的全称是三阶高密度双极性码。
它的编码原理是这样的:先把消息代码变换成AMI码,然后去检查AMI 码的连0串情况,当没有4个以上连0串时,则这时的AMI码就是HDB3码;当出现4个以上连0串时,则将每4个连0小段的第4个0变换成与其前一非0符号(+1 或–1)同极性的符号。
显然,这样做可能破坏“极性交替反转”的规律。
这个符号就称为破坏符号,用V 符号表示(即+1 记为+V, –1记为–V)。
为使附加V符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻V符号也应极性交替。
这一点,当相邻符号之间有奇数个非0符号时,则是能得到保证的;当有偶数个非0 符号时,则就得不到保证,这时再将该小段的第1个0 变换成+B 或–B符号的极性与前一非0 符号的相反,并让后面的非0符号从V 符号开始再交替变化。
虽然HDB3码的编码规则比较复杂,但译码却比较简单。
从上述原理看出,每一个破坏符号V 总是与前一非0符号同极性(包括B 在内)。
这就是说,从收到的符号序列中可以容易地找到破坏点V 于是也断定V 符号及其前面的3个符号必是连0符号,从而恢复4个连0码,再将所有–1变成+1 后便得到原消息代码。
HDB3 码是占空比为 0.5 的双极性归零码。
设信息码为0000 0110 0001 0000 0,则NRZ 码、AMI 码,HDB 3 码如图2.1 所示。
图2.1 NRZ 、AMI 、HDB3 关系图HDB3 码是CCITT 推荐使用的线路编码之一。
HDB3 码的特点是明显的,它除了保持AMI码的优点外,还增加了使连0 串减少到至多3 个的优点,这对于定时信号的恢复是十分有利的。
AMI/HDB3 频谱示意图参见图2.2.。
2 AMI/HDB3编译码系统组成框图图 2.4 AMI/HDB3 编译码模块组成框图1. AMI 码编码规则验证(1)首先将输入信号选择跳线开关KD01 设置在M 位置(右端)、单/双极性码输出选择开关设置KD02 设置在2_3 位置(右端)、AMI/HDB3 编码开关KD03 设置在AMI 位置(右端),使该模块工作在AMI 码方式。
(2)将CMI编码模块内的M序列类型选择跳线开关KX02 产生7位周期m序列,用示波器同时观测输入数据TPD01 和AMI 输出双极性编码数据TPD05 波形及单极性编码数据TPD08 波形,观测时用TPD01 同步。
分析观测输入数据与输出数据关系是否满足AMI 编码关系,画下一个M 序列周期的测试波形。
7位周期序列TPD01(下)与AMI输出的双极性编码数据TPD05(上)7位周期序列TPD01(下)与AMI输出的单极性编码数据TPD08(上)(3)将输入数据选择跳线开关KD01拨除,将示波器探头从TPD01测试点移去,使输入数据端口悬空产生全1码。
重复上述测试步骤,记录测试结果。
(4)将输入数据选择跳线开关KD01拨除,将示波器探头接入TPD01测试点上,使输入数据端口不悬空产生全0码。
重复上述测试步骤,记录测试结果。
2. AMI 码译码和时延测量(1)将输入数据选择跳线开关KD01 设置在M 位置(右端);将CMI 编码模块内的M 序列类型选择跳线开关KX02产生15 位周期m 序列;将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。
(2)用示波器同时观测输入数据TPD01 和AMI 译码输出数据TPD07 波形,观测时用TPD01 同步。
观测AMI 译码输出数据是否满正确,画下测试波形。
问:AMI编码和译码的的数据时延是多少?(3)将CMI编码模块内的M序列类型选择跳线开关KX02产生7 位周期m 序列。
重复上译步骤测量,记录测试结果。
问:此时AMI 编码和译码的的数据时延是多少?思考:数据延时量测量因考虑到什么因数?3. AMI 编码信号中同步时钟分量定性观测(1)将输入数据选择跳线开关KD01 设置在M 位置(右端),将CMI 编码模块内的M 序列类型选择跳线开关KX02产生15 位周期m 序列;将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。
(2)将极性码输出选择跳线开关KD02 设置在2_3 位置(右端)产生单极性码输出,用示波器测量模拟锁相环模块TPP01 波形;然后将跳线开关KD02 设置在1_2 位置(左端)产生双极性码输出,观测TPP01 波形变化。
通过测量结果回答:①AMI编码信号转换为双极性码或单极性码后,那一种码型时钟分量更丰富,为什么?答:单极性码能量丰富②接收机应将接收到的信号转换成何种码型才有利于收端位定时电路对接收时钟进行提取。
(3)将CMI编码模块内的M序列类型选择跳线开关KX02 产生全“1”码,重复上述测试步骤,记录分析测试结果。
(4)将CMI编码模块内的M序列类型选择跳线开关KX02 产生全“0”码,重复上述测试步骤,记录分析测试结果。
思考:具有长连0 码格式的数据在AMI 编译码系统中传输会带来什么问题,如何解决?4.AMI 译码位定时恢复测量(1)将输入数据选择跳线开关KD01 设置在M 位置(右端),将CMI 编码模块内的M 序列类型选择跳线开关KX02 设置在15位序列状态位置,将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。
(2)先将跳线开关KD02 设置在2_3 位置(右端)单极性码输出,用示波器测量同时观测发送时钟测试点TPD02 和接收时钟测试点TPD06 波形,测量时用TPD02同步。
此时两收发时钟应同步。
然后,再将跳线开关KD02 设置在1_2 位置(左端)单极性码输出,观测TPD02 和TPD06 波形。
记录和分析测量结果。
(3)将跳线开关KD02 设置回2_3 位置(右端)单极性码输出,将CMI编码模块内的M序列类型选择跳线开关KX02 设置为全1码或全0码。
重复上述测试步骤,记录分析测试结果。
5. HDB3 码变换规则验证(1)首先将输入信号选择跳线开关KD01 设置在M 位置(右端)、单/双极性码输出选择开关设置KD02 设置在2_3 位置(右端)、AMI/HDB3 编码开关KD03 设置在HDB3 位置(左端),使该模块工作在HDB3 码方式。
(2)将CMI编码模块内的M序列类型选择跳线开关KX02 设置产生15位周期m 序列。
用示波器同时观测输入数据TPD01 和AMI 输出双极性编码数据TPD05 波形及单极性编码数据TPD08 波形,观测时用TPD01 同步。
分析观测输入数据与输出数据关系是否满足AMI 编码关系,画下一个M 序列周期的测试波形。
(3)将CMI编码模块内的M序列类型选择跳线开关KX02 设置产生7位周期m 序列。
重复上述测试步骤,记录测试结果。
(4)将CMI编码模块内的M序列类型选择跳线开关KX02 产生全“1”码,重复上述测试步骤,记录分析测试结果。
(5)将CMI编码模块内的M序列类型选择跳线开关KX02 产生全“0”码,重复上述测试步骤,记录分析测试结果。
6. HDB3 码译码和时延测量(1)将输入数据选择跳线开关KD01 设置在M 位置(右端);将CMI 编码模块内的M 序列类型选择跳线开关KX02 设置产生15 位周期m 序列;将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。
(2)用示波器同时观测输入数据TPD01 和HDB3 译码输出数据TPD07 波形,观测时用TPD01 同步。
分析观测HDB3 编码输入数据与HDB3 译码输出数据关系是否满足HDB3 编译码系统要求,画下测试波形。
问:HDB3 编码和译码的的数据时延是多少?(3)将CMI编码模块内的M序列类型选择跳线开关KX02 设置产生7 位周期m 序列。
重复上译步骤测量,记录测试结果。
问:此时HDB3 编码和译码的的数据时延是多少,为什么?7. HDB3 编码信号中同步时钟分量定性观测(1)将输入数据选择跳线开关KD01 设置在M 位置(右端),将CMI 编码模块内的M 序列类型选择跳线开关KX02 设置产生15 位周期m 序列;将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。
(2)将极性码输出选择跳线开关KD02 设置在2_3 位置(右端)产生单极性码输出,用示波器测量模拟锁相环模块TPP01 波形;然后将跳线开关KD02 设置在1_2 位置(左端)产生双极性码输出,观测TPP01 波形变化根据测量结果思考:HDB3编码信号转换为双极性码和单极性码中那一种码型时钟分量丰富。
(3)使输入数据为全“1”码,重复上述测试步骤,记录测试结果。
(4)使输入数据为全“0”码,重复上述测试步骤,记录测试结果。
分析总结:HDB3 码与AMI 码有何不一样的结果?8. HDB3 译码位定时恢复测量(1)将输入数据选择跳线开关KD01 设置在M 位置(右端),将CMI 编码模块内的M 序列类型选择跳线开关KX02 设置在15位序列状态位置,将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。