第二章自准直仪
- 格式:ppt
- 大小:11.58 MB
- 文档页数:7
自准直仪是利用光学自准直原理测量微小角度的长度测量工具。
自准直原理:自准直原理:光线通过位于物镜焦平面的分划板后,经物镜形成平行光。
平行光被垂直于光轴的反射镜反射回来,再通过物镜后在焦平面上形成分划板标线像与标线重合。
当反射镜倾斜一个微小角度α角时,反射回来的光束就倾斜2α角。
自准直仪的光学系统:由光源发出的光经分划板、半透反射镜和物镜后射到反射镜上。
如反射镜倾斜,则反射回来的十字标线像偏离分划板上的零位。
自准直仪分类:因读数系统的不同分为如下几大类:光学自准直仪:直接或利用测微装置或可动分划板从分划板或读数鼓轮上读出α角的分值和秒值。
光学自准直仪的分度值有约1分到十数秒,精度最低。
当以斜率(例如1/200)表示分度值时,通常称这种自准直仪为平面度测量仪。
光学自准直仪:当以光电瞄准对线代替人工瞄准对线时,就称为光电自准直仪。
也有几种不同的类型,光电瞄准(对线)原理与振子式光电显微镜的相似、光栅式或其它,精度较传统自准直仪有所提高。
数字自准直仪:基于DSP、计算机及CCD或CMOS技术的新式自准直仪。
也分为几种,最大差异的分类是按面阵和线阵,面线阵CCD 只能测试一个方向的数据,可以测试两个方向线阵的自准直仪是将两个线阵组合或通过光学方式组合,精度相对差些,最主要的一般都有测试盲点,但是线阵式有时可以做得测试范围更大些。
一般数字自准直仪具有动态响应和跟踪功能,也称为动态自准直仪,部分光电自准直仪也具有此功能。
自准直仪应用:常用于测量导轨的直线度、平板的平面度(这时称为平面度测量仪)等,也可借助于转向棱镜附件测量垂直度等。
光电自准直仪多应用于航空航天、船舶、军工等要求精密度极高的行业,例如机械加工工业的质量保证(平直度、平面度、垂直度、平行度等)、计量检定行业中角度测试标准、棱镜角度定位及监控、光学元件的测试及安装精度控制等等。
自准直仪原理自准直仪是一种用于测量和调整光学元件的仪器,它能够确保光学系统中的元件处于准确的位置和角度,以保证光路的精确性和稳定性。
自准直仪原理是指利用自准直仪进行光学元件的调整和校准所依据的基本原理和方法。
下面将详细介绍自准直仪的原理及其应用。
首先,自准直仪的原理是基于光学干涉的原理。
当自准直仪的测量光束与被测元件的表面相交时,会产生干涉条纹。
通过观察和分析这些干涉条纹的变化,可以确定光学元件的位置和角度是否准确,从而进行调整和校准。
其次,自准直仪原理还涉及到光学元件的反射和折射特性。
不同材料和表面状态的光学元件在光束的反射和折射过程中会产生不同的干涉效应,利用自准直仪可以对这些效应进行精确的测量和分析,从而实现光学元件的精确定位和角度调整。
另外,自准直仪原理还包括了光学系统的稳定性和环境因素的影响。
光学系统在不同的环境条件下会受到温度、湿度、气压等因素的影响,这些因素会导致光学元件的位置和角度发生变化。
自准直仪通过实时监测和反馈调整,可以对这些变化进行及时的补偿和修正,确保光学系统的稳定性和精度。
最后,自准直仪原理还涉及到数据处理和分析的方法。
通过对自准直仪采集到的干涉条纹图像进行数字化处理和分析,可以得到光学元件的位置和角度信息,进而进行自动化的调整和校准。
这些方法包括数字图像处理、信号处理、模式识别等技术,为自准直仪的精确度和效率提供了强大的支持。
综上所述,自准直仪原理是基于光学干涉、反射和折射特性、系统稳定性和数据处理分析等多方面的原理和方法。
通过对这些原理的深入理解和应用,可以实现光学元件的精确定位和角度调整,保证光学系统的精确性和稳定性,为光学测量和调整提供了重要的技术支持。
成都市技师学院理论课教案首页导入新课进入新课一、仪器的工作原理1.仪器用途:自准直仪是一种光学测角仪器它是利用光学自准直原理来观测目标位置的变化,广泛应用于直线度和平面度的测量。
它和多面棱体配合可以检测分度机构的分度误差;此外,还可测量零部件的垂直度、平行度等。
当位于物镜焦面上的分划板被光源照亮后,从分划板上发出的光,经过物镜后,即形成平行光,这样的光学系统结构,就叫做平行光管。
自准仪的测微原理:应用自准直光管的工作原理,再加上测微机构而设计制造的计量仪器,被称之为自准直仪。
只要用自准直仪的测微机构测出上式中距离t,就可得出反射镜的角度变化值。
这就是自准直仪测量微小角度的基本原理。
自准直仪通常由三部分组成:1.体外反射镜2.物镜光管部件3.测微目镜部件由于分划板和各个光学元件的位置、结构不同,自准直仪有以下三种基本光路。
展示PPT 认真听讲20分钟信息反馈:新课任务实施和测微螺杆12同轴相连的测微鼓轮13上有100格圆周刻度,每格代表反射镜的倾角α为0.005/1000弧度。
当十字线像偏离刻度“10”时,如图2—7(b),可转动测微鼓轮13,使长刻线再次夹在十字线象的正中如图2—7(c)。
长刻线移动的距离,即十字线象的偏离量。
图中1~4组成了测微目镜部件,测量前可松开定位螺钉5,由于两锥孔在圆周上互成90o ,可使整个目镜头就可精确地转过90o。
调整三个调节螺钉6将反射镜调整到严格垂直于镜座面的位置上。
三、仪器的操作与使用(一)操作过程1、将仪器主体放置在被测件的一端或被测件以外稳固的基础上,反射镜座放在被测件上,并且要与仪器主体在同一水平面内;2、接通电源后,将反射镜座靠近自准直仪的主体,使反射镜正对物镜,使十字线像出现在目镜视场的正中或附近;3、仔细地沿测量方向移动反射镜座,在各预定测量位置上读数,并进行数据处理。
(二)关于仪器的分度值在仪器说明书中有表示为(≈1秒)。
仪器物镜的焦距f物为400mm,其分度值i应为仪器若按分度值为1”使用时,每一个分度就有0.03’’误差。
自准直仪原理自准直仪是一种用于测量和调整光学系统的仪器,它能够精确地确定光学系统的光轴位置和方向。
在现代光学领域,自准直仪被广泛应用于望远镜、显微镜、激光器等光学系统的制造和校准过程中。
本文将介绍自准直仪的原理及其工作原理。
自准直仪的原理是基于光学干涉原理的。
光学干涉是指两束或多束光波相互叠加,形成明暗条纹的现象。
自准直仪利用这一原理,通过光波的干涉来测量光学系统的光轴位置和方向。
当光线与光学系统的光轴重合时,干涉条纹将保持稳定,而当光线偏离光轴时,干涉条纹将产生移动。
通过测量干涉条纹的移动情况,就可以确定光学系统的光轴位置和方向。
自准直仪通常由光源、分束器、透镜、干涉仪和检测器等部件组成。
光源发出的光线经过分束器分成两束,一束直射到光学系统上,另一束经过透镜成为平行光,然后通过干涉仪和检测器进行干涉条纹的测量。
当光学系统的光轴与平行光的方向重合时,干涉条纹将保持稳定,检测器将输出零信号;而当光学系统的光轴偏离平行光的方向时,干涉条纹将产生移动,检测器将输出相应的信号。
通过测量检测器的输出信号,就可以确定光学系统的光轴位置和方向。
自准直仪的工作原理是基于干涉测量技术的,它能够实现对光学系统光轴位置和方向的精确测量和调整。
在光学系统的制造和校准过程中,自准直仪起着至关重要的作用,它能够帮助工程师们快速准确地调整光学系统,确保光学系统的性能达到设计要求。
同时,自准直仪还具有测量精度高、操作简便等优点,因此在光学制造和校准领域得到了广泛的应用。
总之,自准直仪是一种基于光学干涉原理的测量仪器,它能够实现对光学系统光轴位置和方向的精确测量和调整。
在现代光学制造和校准领域,自准直仪发挥着重要作用,为光学系统的制造和校准提供了有力的技术支持。
希望本文能够帮助读者更好地理解自准直仪的原理及其工作原理,进一步推动光学技术的发展和应用。
自准直仪的工作原理
自准直仪是一种在测量工程中经常使用的高精度测量仪器,其主要用
途是在进行测量时对仪器的方向和姿态进行修正,从而保证测量结果
的准确性。
下面我们来分步骤介绍自准直仪的工作原理。
第一步,光路原理
自准直仪的原理基于光路原理,其本质就是使用光束探测测量仪器的
姿态角。
在自准直仪中,主要使用激光光束照射到一个旋转的反射镜
或者棱镜上,然后通过像差透镜和准直透镜进行光路的整理,在透镜
后面的位置安装一个导轨(通过固体角度的反射来达到精细定位),
通过该导轨可以精细调节透镜的位置,从而实现光路的精细调节。
第二步,姿态测量
在自准直仪的光路准备好之后,接下来就是通过光束测量仪器的姿态。
在自准直仪中,主要采用两种不同的测量方法:一种是水平仪的形式,通过调节光路达到水平状态;另一种是在仪器旋转的平面上采用静电
力进行测量,进行姿态波动捕捉。
第三步,姿态校正
在完成姿态测量之后,可以通过自准直仪进行姿态校正。
在自准直仪中,主要采用动态校正和静态校正两种方法,其中动态校正是在仪器
运动时对仪器进行测量和校正,静态校正是在仪器静止时对仪器进行
测量和校正。
第四步,数据处理和输出
在完成姿态校正之后,可以将校正后的数据进行处理和输出。
在自准
直仪中,主要通过计算机进行数据处理和输出,使得测量结果更加准确。
总结一下,自准直仪的工作原理主要基于光路原理,并且采用激光光
束进行姿态测量和校正,其中动态校正和静态校正是非常重要的环节。
通过自准直仪的工作,可以大大提高测量结果的准确性和稳定性,从
而适用于各种高精度测量工程中。