电学元件的伏安特性测量
- 格式:ppt
- 大小:1.30 MB
- 文档页数:14
电学元件伏安特性的测量实验报告BME8 鲍小凡 2008013215【实验目的】(1)半定量观察分压电路的调节特性; (2)测定给定电阻的阻值;(3)测定半导体二极管正反向伏安特性; (4)戴维南定理的实验验证。
【实验原理】一、分压电路及其调节特性 1、分压电路的接法如图3.1.1所示,将变阻器R 的两个固定端A 和B 接到直流电源E 上,而将滑动端C 和任一固定端(A 或B ,图中为B )作为分压的两个输出端接至负载R L 。
图中B 端电位最低,C 端电位较高,CB 间的分压大小U 随滑动端C 的位置改变而改变,U 值可用电压表来测量。
变阻器的这种接法通常称为分压器接法。
分压器的安全位置一般是将C 滑至B 端,这时分压为零。
图3.1.1 分压电路 图3.1.2 分压电路输出电压与滑动端位置的关系2、分压电路的调节特性如果电压表的内阻大到可忽略它对电路的影响,那么根据欧姆定律很容易得出分压为:()BC LL BC BCR R U E RR R R R =+-从上式可见,因为电阻R BC 可以从零变到R ,所以分压U 的调节范围为零到E ,分压U 与负载电阻R L的大小有关。
理想情况下,即当R L >>R 时,U=ER BC /R ,分压U 与阻值R BC 成正比,亦即随着滑动端C 从B 滑至A ,分压U 从零到E 线性地增大。
当R L 不是比R 大很多时,分压电路输出电压就不再与滑动端的位移成正比了。
实验研究和理论计算都表明,分压与滑动端位置之间的关系如图3.1.2的曲线所示。
R L /R 越小,曲线越弯曲,这就是说当滑动端从B 端开始移动,在很大一段范围内分压增加很慢,接近A 端时分压急剧增大,这样调节起来不太方便。
因此作为分压电路的变阻器通常要根据外接负载的大小来选用。
必要时,还要同时考虑电压表内阻对分压的影响。
E R A BCR L V E A B C 端位移 输 出 电 压 U 理想情况 1/1 1/31/7 RL/R=1/20称为电学元件的伏安特性。
实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌握线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理说明电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。
实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。
万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。
一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。
1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。
图1-1 元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。
一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。
通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。
3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。
二极管的电阻值随电压或电流的大小、方向的改变而改变。
它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。
发光二极管正向电压在0.5~2.5V之间时,正向电流有很大变化。
可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
实验一:电路元件伏安特性的测量一、实验目的1. 掌握线性、非线性电阻元件及电源的概念。
2.学习线性电阻和非线性电阻伏安特性的测试方法。
3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。
二、实验仪器电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻三、实验原理1、数字万用表的构成及使用方法数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。
直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。
可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。
2、整体结构1)交直流电压测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。
(2)将功能开关置于V量程档。
将测试表笔并联在被测元件两端2)交直流电流测量(1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。
(2)将功能开关置A量程。
(3)表笔串联接入到待测负载回路里。
3)电阻测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。
(2)将功能开关置于Q量程。
(3)将测试表笔并接到待测电阻.上4)二极管和蜂鸣通断测量(1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。
(2)将功能开关置于二极管和蜂鸣通断测量档位。
(3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的读数为二极管正向压降的近似值。
将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。
同时LCD显示被测线路两端的电阻值。
3)线性电阻元件的伏安特性曲线是- -条通过坐标原点的直线。
如图1.1.1所示;非线性电阻元件,如半导体二极管,其伏安特性如图1.1.2所示,电压、电流关系不服从欧姆定律。
基本电学实验论文实验一电路元件伏安特性的测绘及电源外特性的测量一、实验目的1、学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线2、学习测量电源外特性的方法3、掌握运用伏安法判定电阻元件类型的方法4、学习使用直流电压表、电流表,掌握电压、电流的测量方法二、实验设备名称数量型号1、直流恒压源恒流源1台自备2、数字万用表2台自备3、电阻11只1Ω×1 5.1Ω×110Ω×120Ω×1 47Ω×2100Ω×2200Ω×1 1kΩ×1 3kΩ×14、白炽灯泡1只12V/3W5、灯座1只M=9.3mm6、稳压二极管1只2CW567、电位器1只470 /2W8、短接桥和连接导线若干SJ-009和SJ-3019、九孔插件方板1块SJ-010三、实验原理与说明1、电阻元件(1) 伏安特性二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。
通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。
通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。
把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。
(2) 线性电阻元件线性电阻元件的伏安特性满足欧姆定律。
在关联参考方向下,可表示为:U=IR,其中R为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。
如图1-1(a)所示。
(3) 非线性电阻元件非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,就是说它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图1-1(b)所示。
(4) 测量方法在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。
1. 熟悉伏安特性实验的基本原理和操作步骤;2. 掌握伏安特性曲线的绘制方法;3. 研究电阻元件和二极管等非线性元件的伏安特性;4. 分析伏安特性曲线,了解元件的电气性能。
二、实验原理伏安特性曲线是指在一定条件下,元件两端电压与通过元件的电流之间的关系曲线。
对于线性电阻元件,其伏安特性曲线为一条通过坐标原点的直线,其斜率表示元件的电阻值。
对于非线性元件,其伏安特性曲线为曲线,无法用简单的线性关系表示。
本实验主要研究以下元件的伏安特性:1. 线性电阻元件:伏安特性曲线为直线,斜率为元件的电阻值;2. 二极管:伏安特性曲线为曲线,具有明显的非线性特性;3. 稳压二极管:伏安特性曲线为曲线,具有稳压特性。
三、实验仪器与设备1. 伏安特性测试仪;2. 直流稳压电源;3. 直流电压表;4. 直流电流表;5. 电阻元件;6. 二极管;7. 稳压二极管;8. 导线;9. 开关;10. 连接板。
1. 将伏安特性测试仪与直流稳压电源、直流电压表、直流电流表连接好;2. 将电阻元件、二极管、稳压二极管依次接入伏安特性测试仪;3. 设置直流稳压电源的输出电压,从低到高逐渐增加;4. 观察并记录伏安特性测试仪显示的电压与电流值;5. 绘制电阻元件、二极管、稳压二极管的伏安特性曲线;6. 分析伏安特性曲线,了解元件的电气性能。
五、实验数据及结果1. 电阻元件伏安特性曲线(1)线性电阻元件伏安特性曲线为直线,斜率为元件的电阻值;(2)曲线通过坐标原点,表示电阻值与电压、电流无关。
2. 二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,随着电压的增加,电流几乎不变。
3. 稳压二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,当电压达到稳压值时,电流急剧增大。
六、实验结论1. 伏安特性实验可以直观地了解元件的电气性能;2. 伏安特性曲线的绘制方法简单易行;3. 通过分析伏安特性曲线,可以判断元件的质量和性能。
元件伏安特性的测定实验报告一、实验目的。
本实验旨在通过对电路中元件的伏安特性进行测定,掌握元件的电压-电流关系,并进一步了解元件的特性及其在电路中的应用。
二、实验仪器与设备。
1. 直流稳压电源。
2. 万用表。
3. 电阻箱。
4. 耐压表。
5. 电路连接线。
6. 待测元件。
三、实验原理。
在电路中,元件的伏安特性是指元件的电压与电流之间的关系。
对于电阻元件,其伏安特性为线性关系,即电阻元件的电流与电压成正比。
而对于二极管等非线性元件,其伏安特性则呈现出非线性关系。
四、实验步骤。
1. 将待测元件与电路连接线连接到电路中,注意连接的正确性和稳固性。
2. 调节直流稳压电源,使其输出电压逐渐增加,同时通过万用表记录电路中元件的电压和电流数值。
3. 根据记录的电压-电流数值,绘制出元件的伏安特性曲线。
4. 对非线性元件,如二极管等,进行反向电压测量,记录其反向击穿电压。
五、实验数据与分析。
通过实验测得的数据,我们可以得到元件的伏安特性曲线。
对于电阻元件,其伏安特性曲线为一条直线,而对于二极管等非线性元件,则呈现出非线性特性的曲线。
通过分析伏安特性曲线,我们可以了解元件的工作状态及其在电路中的作用。
六、实验结论。
通过本次实验,我们成功测定了元件的伏安特性,并绘制出了相应的伏安特性曲线。
通过对曲线的分析,我们可以更加深入地了解元件的特性及其在电路中的应用。
同时,我们也掌握了测定伏安特性的实验方法和步骤。
七、实验总结。
本次实验通过测定元件的伏安特性,使我们对元件的工作特性有了更深入的了解。
同时,实验过程中我们也掌握了一定的实验技能和操作方法。
在今后的学习和工作中,我们将能更加熟练地运用这些知识和技能,为电路设计和调试提供更加可靠的支持。
八、参考文献。
[1] 《电路原理与技术》。
[2] 《电子技术基础》。
以上为本次实验的实验报告,希望能对大家的学习和工作有所帮助。
实验七线性和非线性电学元件伏安特性的测量本实验主要通过测量不同电学元件的伏安特性,了解电流-电压关系及其特点,并对线性与非线性元件进行区分。
同时,通过实验掌握伏安表和示波器的使用方法。
一、实验器材1. 直流电源2. 电阻箱3. 伏安表4. 示波器5. 切换开关6. 电路板7. 线性电阻、电流表等二、实验原理1. 线性电阻的伏安特性线性电阻是最基本的电阻元件,其伏安特性的特点是与电流成正比,即Ohm定律: U = IR其中,U为电压,I为电流,R为电阻值。
在实验中,通过调整电源输出电压,改变电路中的电流值,并通过伏安表测量电阻两端的电压,然后求解电阻的电压-电流关系,并绘制成伏安特性曲线。
除了线性电阻外,还有一些电学元件,如二极管、三极管、电容、电感等,它们的伏安特性不是线性的,即非线性元件。
其中最常见的是二极管。
其伏安特性的特点是在正向偏置情况下,电压很小时电流几乎不流动;但当电压超过一定值时,电流急剧增加。
而在反向偏置情况下,电流很小,电压增加时,电流也几乎不发生变化,称为反向饱和区。
三、实验步骤1. 准备实验器材并接线。
将直流电源连接到电路板上的正负极,将电阻箱、伏安表、电阻与电路板连接,并用切换开关选择要测量的电路。
选取二极管作为样品,通过调整直流电源输出电压来改变二极管的正向偏置电压,记录电流与电压数据。
描绘二极管的伏安特性曲线。
4. 数据处理与分析以伏安特性曲线为依据,对线性电阻和非线性元件进行分类,并分析非线性元件的工作原理。
四、实验注意事项1. 操作时注意电路的连接情况,避免拧错导致损坏实验器材。
2. 正确选择伏安表的测量范围,以避免仪器烧毁。
3. 电阻、二极管等元件的选取应合适,避免输出电压超过测量范围。
4. 实验完毕后,应及时关闭电源及伏安表电源,避免电路出现短路等危险。
电学元件伏安特性的测量实验目的(1) 了解分压器电路的调节特性; (2) 掌握测量伏安特性的基本方法、线路特点以及伏安法测电阻的误差估算;(3) 学习按回路接线的方法; (4) 初步了解戴维南定理的内容。
实验原理1. 分压电路及其调节特性(1) 分压电路的接法 (2) 分压电路的调节特性若忽略电压表的内阻,则:E R R R RR R R V BCBC L LBC )(-+=式中,R BC 为R 中实际分压段。
若R R L >>,分压V 与BC R 基本上成线性关系;RR L越小,曲线越弯曲。
2. 电学元件的伏安特性(1) 伏安特性曲线以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
(2)线性元件(3)非线性元件3.实验电路的比较和选择(1)电流表内接R=UI−R I△R R =√(△UU)2+(△II)2+(△RIR I)2(R IU I⁄)2[1−R IU I⁄]⁄(2)电流表外接1 R =IU−1R V△R R =√(△UU)2+(△II)2+(△RVR V)2(U I⁄R V)2[1−U I⁄R V]⁄4.戴维南定理一个含源二端网络可以用一个恒压源串联一个内阻抗所所组成的等效电压源来代替。
本实验中所用电路如下:(折线代表电阻)电压与阻抗理论值为:E R R R E e 212+=,21213R R RR R R e ++=实验步骤1. 半定量观察分压电路的调节特性2. 测电阻分别使用电流表内接法和电流表外接法测量阻值约为12K Ω和0.1K Ω的两个电阻,记录数据并进行计算、分析、比较和讨论。
3. 测定半导体二极管正反向伏安特性测量半导体二极管的伏安特性,并将正反向伏安特性画在同一个图上。
4. 戴维南定理的验证(1) 调整外接电阻R i ,记录多组电压U i 、电流I i ; (2) 在课内选出两组数据,带入方程组:U i =E e -I i R e计算出E e 和R e ;(3) 验证实验结果。
电路元件伏安特性的测绘实验报告实验目的,通过测绘电路元件的伏安特性,了解电路元件的电流与电压之间的关系,掌握电路元件的基本特性。
实验仪器与设备,电流电压测量仪、电阻箱、直流电源、导线、电路元件(如电阻、二极管等)。
实验原理,在电路中,电流与电压之间存在一定的关系,这种关系被称为伏安特性。
在直流电路中,电流和电压之间的关系可以用欧姆定律来描述,I=U/R,其中I为电流,U为电压,R为电阻。
而对于非线性元件(如二极管),其伏安特性则不满足欧姆定律,需要通过实验测绘其伏安特性曲线。
实验步骤:1. 将实验仪器接线连接好,保证电路连接正确无误。
2. 依次测绘电路中各个元件的伏安特性曲线。
3. 根据测绘得到的数据,绘制伏安特性曲线图。
4. 分析曲线图,得出电路元件的特性参数。
实验数据与结果:以电阻为例,测绘得到的伏安特性曲线呈现为一条直线,通过测绘数据计算得到电阻的阻值为100Ω。
而对于二极管,测绘得到的伏安特性曲线为非线性曲线,符合二极管的特性。
从曲线图中可以得出二极管的导通电压约为0.7V。
实验结论:通过本次实验,我们成功测绘了电路元件的伏安特性曲线,并得出了电路元件的特性参数。
实验结果表明,不同的电路元件具有不同的伏安特性,对于线性元件来说,其伏安特性曲线为一条直线,而对于非线性元件(如二极管),其伏安特性曲线为非线性曲线。
实验总结:本次实验通过测绘电路元件的伏安特性曲线,加深了对电路元件特性的理解,掌握了测绘伏安特性曲线的方法。
同时,也对实验仪器的使用和实验操作技能有了进一步的提高。
通过这次实验,我们不仅仅是简单地获取了一些数据,更重要的是加深了对电路元件伏安特性的理解,为今后的电路设计与分析打下了坚实的基础。
实验中遇到的问题与解决方法:在实验过程中,我们遇到了一些电路连接错误导致的数据异常,通过仔细检查电路连接,及时发现并排除了问题,保证了实验数据的准确性。
在今后的学习与工作中,我们将继续深入学习电路理论知识,不断提高实验操作技能,为今后的科研与工程实践打下坚实的基础。
电学元件的伏安特性实验报告电学元件的伏安特性实验报告引言伏安特性是描述电学元件的电压-电流关系的重要参数,通过实验可以得到元件的伏安特性曲线,从而了解元件的电性能。
本实验旨在通过测量不同电阻和电源电压下的电流,绘制伏安特性曲线,以及分析元件的特性和应用。
实验目的1. 了解电学元件的伏安特性概念和意义;2. 学习使用电流表和电压表进行电流和电压的测量;3. 掌握绘制伏安特性曲线的方法;4. 分析不同电阻下电流与电压的关系。
实验器材与方法器材:电流表、电压表、电阻箱、电源、导线等;方法:按照实验步骤连接电路,调节电源电压和电阻值,测量电流和电压数据。
实验步骤1. 将电流表和电压表依次连接到电路中,确保连接正确;2. 调节电源电压为初始值,记录电流表和电压表的读数;3. 逐步增加电源电压,每次增加一定值,记录电流和电压的读数;4. 重复步骤3,直至达到设定的最大电压值;5. 更换不同电阻值,重复步骤2-4;6. 根据测量数据,绘制伏安特性曲线。
实验结果与分析根据实验数据,绘制伏安特性曲线如下图所示。
(插入伏安特性曲线图)从伏安特性曲线中可以得到以下结论:1. 当电阻值较小时,电流随电压的增加呈线性关系,即欧姆定律成立;2. 随着电阻值的增加,电压增加时电流增加的速度逐渐减小,电流-电压关系逐渐非线性;3. 当电阻值很大时,电流几乎不随电压变化,电流趋于稳定。
根据以上分析,可以得出以下结论:1. 电阻是影响电流-电压关系的重要因素,电阻值越大,电流随电压的变化越小;2. 伏安特性曲线可以用来描述电学元件的电性能,通过分析曲线可以了解元件的工作状态和应用范围;3. 伏安特性曲线在电路设计和元件选择中具有重要意义,可以帮助工程师优化电路性能。
结论通过本次实验,我们成功绘制了电学元件的伏安特性曲线,并分析了曲线的特性和应用。
实验结果表明电阻对电流-电压关系有重要影响,伏安特性曲线可以用来评估元件的性能和应用范围。
伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
(a)线性电阻 (b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源 1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只 8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
《电路元件特性曲线的伏安测量法实验报告》导言:伏安法是分析电路元件的电学特性的一种常见的方法。
本实验旨在探究电路元件特性曲线的伏安测量法,使用伏安仪测量具有不同特性的二极管、电阻器与晶体管,并绘制它们的伏安特性曲线。
通过实验分析,我们可以更深刻地认识电子元件的特性及其工作原理。
一、实验仪器及原理本次实验使用的主要器材与仪器为直流电源、万用表、伏安仪,实验元件为二极管、电阻器和晶体管。
二、实验步骤1. 安装电路:将电路元件按实验要求安装在实验板上,并接好电路,注意连接正确。
2. 开启电源:调整直流电源的输出电压,使二极管的正向电压逐渐增加,记录其电压和电流的变化情况,绘制出二极管的伏安特性曲线。
3. 测量电阻器的伏安特性曲线:使用伏安仪测量电阻器不同电压下的电流值,记录每一个电压值对应的电流值,绘制出电阻器的伏安特性曲线。
4. 测量晶体管的伏安特性曲线:调节直流电源的电压,记录晶体管的三极管电流和三极管沟极电压(VCE),绘制出晶体管的伏安特性曲线。
三、实验结果与分析1. 二极管的伏安特性曲线二极管具有单向导电性。
当二极管正向偏置时,电流稳定上升,呈现出近似线性的直线性质;而当二极管反向偏置时,电流极小,呈现出一个近似垂直于横坐标轴的反向截止状态。
实验测得的二极管特性曲线如下图所示:2. 电阻器的伏安特性曲线电阻器为无源元件,其特性曲线表现为直线性质。
由于电阻器内部电阻稳定,当电压升高时,电流也呈线性升高的趋势。
实验测得的电阻器特性曲线如下图所示:3. 晶体管的伏安特性曲线晶体管具有放大作用,其特性曲线表现为分别对应三极管的发射极电流与沟极电压,以及集电极电流与集电极-发射极电压之间的关系曲线,是一种非常重要的特性曲线。
实验测得的晶体管特性曲线如下图所示:四、实验结论本次实验探究了电路元件特性曲线的伏安测量法,并使用伏安仪测量了二极管、电阻器和晶体管的特性曲线。
电路元件伏安特性的测绘及电源外特性的测量一.实验目的1.学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线2.学习测量电源外特性的方法3.掌握运用伏安法判定电阻元件类型的方法4.学习使用直流电压表、电流表,掌握电压、电流的测量方法二.实验原理与说明1.电阻元件(1)伏安特性二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。
通过一定的测量电路,用电压表、电流表可测定电阻元件的伏安特性,由测得的伏安特性可了解该元件的性质。
通过测量得到元件伏安特性的方法称为伏安测量法(简称伏安法)。
把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。
(2)线性电阻元件线性电阻元件的伏安特性满足欧姆定律。
在关联参考方向下,可表示为:U=IR,其中R为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。
如图3-1(a)所示。
(3)非线性电阻元件非线性电阻元件不遵循欧姆定律,它的阻值R随着其电压或电流的改变而改变,即它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图3-1(b)所示。
(a) 线性电阻的伏安特性曲线(b) 非线性电阻的伏安特性曲线图3-1 伏安特性曲线(4)测量方法在被测电阻元件上施加不同极性和幅值的电压,测量出流过该元件中的电流;或在被测电阻元件中通入不同方向和幅值的电流,测量该元件两端的电压,便得到被测电阻元件的伏安特性。
2.直流电压源(1)直流电压源理想的直流电压源输出固定幅值的电压,而它的输出电流大小取决于它所连接的外电路。
因此它的外特性曲线是平行于电流轴的直线,如图3-2(a )中实线所示。
实际电压源的外特性曲线如图3-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图3-2(b )所示。