电阻元件伏安特性的测量
- 格式:ppt
- 大小:1.54 MB
- 文档页数:2
一、实验目的:
(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。
(2)学习直流稳压电源、万用表、电压表的使用方法。
二、实验原理及说明
(1)元件的伏安特性。
如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。
(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。
元件的电阻值可由下式确定:R=u/i=(m u/m i)tgα,期中m u和m i分别是电压和电流在u-i平面坐标上的比例。
三、实验原件
U s是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw
四、实验内容
(1)线性电阻元件的正向特性测量。
(2)反向特性测量。
(3)计算阻值,将结果记入表中
(4)测试非线性电阻元件D3的伏安特性
(5)测试非线性电阻元件的反向特性。
表1-1 线性电阻元件正(反)向特性测量
表1-5 二极管IN4007正(反)向特性测量
五、实验心得
(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时一定要考虑正确使用导线。
电学元件的伏安特性测量实验报告电学元件的伏安特性测量实验报告引言:电学元件的伏安特性是电子工程领域中一个重要的实验内容。
通过测量电流与电压之间的关系,可以了解元件的性能和特点。
本实验报告将介绍伏安特性测量实验的目的、原理、实验过程和结果分析。
一、实验目的本实验的主要目的是通过测量电阻、二极管和电容的伏安特性曲线,掌握这些电学元件的基本特性,并加深对电路中电流和电压之间关系的理解。
二、实验原理1. 电阻的伏安特性测量电阻是一个线性元件,其伏安特性曲线为一条直线,斜率为电阻值。
实验中,通过改变电阻上的电压,测量通过电阻的电流,然后根据欧姆定律计算电阻值。
2. 二极管的伏安特性测量二极管是一个非线性元件,其伏安特性曲线为一条指数曲线。
实验中,通过改变二极管的电压,测量通过二极管的电流。
由于二极管的正向电压与正向电流之间存在指数关系,因此需要在实验中选择适当的电压范围,以保证测量数据的准确性。
3. 电容的伏安特性测量电容是一个存储电荷的元件,其伏安特性曲线为一条斜率逐渐变小的曲线。
实验中,通过改变电容器两端的电压,测量电容器充电和放电的电流。
根据电容器的充放电过程,可以得到电容器的伏安特性曲线。
三、实验过程1. 电阻的伏安特性测量a. 搭建电路:将电阻与电压源和电流表连接,保证电路的稳定性。
b. 调节电压源的电压,并记录电流表的读数。
c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。
d. 根据欧姆定律,计算电阻的值。
2. 二极管的伏安特性测量a. 搭建电路:将二极管与电压源和电流表连接,保证电路的稳定性。
b. 调节电压源的电压,并记录电流表的读数。
c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。
d. 根据测量数据,绘制二极管的伏安特性曲线。
3. 电容的伏安特性测量a. 搭建电路:将电容器与电压源和电流表连接,保证电路的稳定性。
b. 调节电压源的电压,并记录电流表的读数。
c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。
竭诚为您提供优质文档/双击可除电阻元件的伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。
2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。
3、学会常用直流电工仪表和设备的使用方法。
二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。
线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。
三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。
应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。
2、学会用电流表测量各支路电流。
二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。
即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。
2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。
这一定律实质上是电压与路径无关性质的反映。
基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。
运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。
三、实验设备四、实验内容及实验数据实验线路如图4-1。
把开关K1接通U1,K2接通U2,K3接通R4。
就可以连接出基尔霍夫定律的验证单元电路,如图4-2。
图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。
图4-2中的I1、I2、I3的方向已设定。
三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。
2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。
实验报告实验报告专业***** 班级******** 姓名**** 学号******实验课程电阻元件特性的研究指导教师实验日期2017.6.8同实验者实验项目测试线性和非线性元件的 V-A特性实验设备及器材1. 0~20V可调直流稳压电源(带限流保护)。
2.量程可变标准数字电流表(200µA、2mA、20mA、200mA四档,三位半数字显示,精度0.5%);三位半数显直流电压表(可变量程2V、20V,精度0.5%)。
3.被测元件(金属膜电阻、二极管、稳压管、12V小灯泡)及8根连线。
一、实验目的测试线性和非线性元件的V-A特性。
1.金属膜电阻的V-A特性。
2.二极管的正向和反向V-A特性。
3.稳压管的正向和反向V-A特性。
4.小灯泡的V-A特性。
二、实验原理把直流电压加到某个电阻性元件上,随着电压V的增加,电流I也增加,电压U 和电流I的比值不一定是一个常数。
当U和I成正比,二者之比为常数时,该元件被称为线性电阻元件,而当两者的比值不是一个常数时,则这种元件被称为非线性电阻元件。
把电压U和电流I的对应关系作图,得到的曲线称为该元件的伏安特性曲线。
曲线上某点的坐标值,电压和电流两者之比是一个电阻量,这个电阻称为等效电阻或静态电阻。
这种通过测量电压和电流测出电阻量的方法称为伏安法。
测量V-A特性的电路如图1、图2所示。
图中E为可调直流稳压电源,R为限流电阻,RL为被测元件,○V为三位半数显直流电压表,○A为三位半数显直流电流表。
测量时,当电压表或电流表显示1或-1时,表示已超过量程范围,必须扩大量程。
图1称为电流表内接,图2称为电流表外接。
由于同时测量电压和电流,无论哪种电路都会产生接入误差,现分析如下:1.电流表内接由图1可知,电流表测出流经RL的电流,但电压表测出的是加在RL和电流表两者的电压之和,即由于电流表的接入产生电压的测量误差UA。
从相对接入误差UA/UD可知,若电流表内阻RA<<RL,则UA<<UD,相对接入误差很小;反之若电流表内阻较大,就会造成不小的接入误差,所以电流表的内阻越小越有利于测量。
一、实验目的1. 学习测量电阻元件伏安特性的方法;2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3. 掌握直流稳压电源、直流电压表、直流电流表的使用方法;4. 通过实验加深对欧姆定律和伏安特性曲线的理解。
二、实验原理电阻元件的伏安特性曲线反映了电阻元件两端的电压U与通过电阻的电流I之间的函数关系。
根据欧姆定律,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,其斜率等于电阻值R。
而非线性电阻元件的伏安特性曲线不是一条直线,其阻值R随电压U的变化而变化。
三、实验仪器1. 直流稳压电源2. 直流电压表3. 直流电流表4. 电阻元件(线性电阻、非线性电阻)5. 导线6. 电路连接器四、实验步骤1. 连接电路:根据实验要求,将直流稳压电源、直流电压表、直流电流表、电阻元件和导线连接成电路。
2. 设置初始参数:将直流稳压电源的输出电压调至一定值,记录下此时的电压值。
3. 测量伏安特性:改变直流稳压电源的输出电压,分别测量线性电阻和非线性电阻的电流和电压值,记录数据。
4. 数据处理:将测得的电压和电流值绘制成伏安特性曲线,分析电阻元件的伏安特性。
五、实验结果与分析1. 线性电阻伏安特性:通过实验测量,线性电阻的伏安特性曲线是一条通过坐标原点的直线,斜率等于电阻值R。
这与欧姆定律的理论预期相符。
2. 非线性电阻伏安特性:通过实验测量,非线性电阻的伏安特性曲线不是一条直线,其阻值R随电压U的变化而变化。
这与非线性电阻元件的特性相符。
六、实验讨论1. 在实验过程中,应注意测量数据的准确性,尽量减小实验误差。
2. 在连接电路时,应注意电路的连接顺序,避免因连接错误导致实验失败。
3. 在实验过程中,要注意安全操作,避免因误操作导致设备损坏或人身伤害。
七、实验结论1. 通过实验,我们掌握了测量电阻元件伏安特性的方法。
2. 通过实验,我们加深了对欧姆定律和伏安特性曲线的理解。
3. 通过实验,我们学会了如何分析电阻元件的伏安特性。
元件伏安特性的测定实验报告元件伏安特性的测定实验报告摘要:本实验旨在通过测量电阻、二极管和电容的伏安特性曲线,探究元件的电流与电压之间的关系。
实验结果表明,电阻的伏安特性为线性关系,二极管的伏安特性为非线性关系,而电容的伏安特性则呈现出充放电的特点。
引言:伏安特性是描述电子元件电流与电压之间关系的重要参数。
通过测量元件的伏安特性曲线,可以了解元件的工作状态、性能以及应用范围。
本实验将选取常见的电阻、二极管和电容进行测量,以探究它们的伏安特性。
实验方法:1. 实验仪器:万用表、电源、电阻箱、示波器等。
2. 实验步骤:a. 将电阻、二极管和电容依次连接到电路中。
b. 通过电源调节电压,同时用万用表测量电流和电压。
c. 记录不同电压下的电流数值,并绘制伏安特性曲线。
结果与讨论:1. 电阻的伏安特性:实验中选取了一个100欧姆的固定电阻进行测量。
结果显示,在不同电压下,电流与电压呈线性关系,即伏安特性为直线。
这符合欧姆定律,即电流与电压成正比,电阻为常数。
通过斜率可以计算出电阻值。
2. 二极管的伏安特性:实验中选取了一颗常见的硅二极管进行测量。
结果显示,在正向偏置时,电流与电压呈非线性关系,即伏安特性为曲线。
随着电压的增加,电流迅速增大,但增长速度逐渐减慢。
而在反向偏置时,二极管基本上不导电。
这说明二极管具有单向导电性,可用于整流等电路。
3. 电容的伏安特性:实验中选取了一个100μF的电容进行测量。
结果显示,在充电过程中,电容两端的电压随时间线性增加,而电流逐渐减小。
当电容充满电后,电流变为零。
而在放电过程中,电容两端的电压随时间线性减小,电流逐渐增大。
这说明电容具有储存和释放电能的特性,可用于滤波等电路。
结论:通过本实验的测量结果,可以得出以下结论:1. 电阻的伏安特性为线性关系,即电流与电压成正比。
2. 二极管的伏安特性为非线性关系,即正向偏置时电流迅速增大,反向偏置时基本不导电。
3. 电容的伏安特性表现为充放电过程,可储存和释放电能。
1. 熟悉伏安特性实验的基本原理和操作步骤;2. 掌握伏安特性曲线的绘制方法;3. 研究电阻元件和二极管等非线性元件的伏安特性;4. 分析伏安特性曲线,了解元件的电气性能。
二、实验原理伏安特性曲线是指在一定条件下,元件两端电压与通过元件的电流之间的关系曲线。
对于线性电阻元件,其伏安特性曲线为一条通过坐标原点的直线,其斜率表示元件的电阻值。
对于非线性元件,其伏安特性曲线为曲线,无法用简单的线性关系表示。
本实验主要研究以下元件的伏安特性:1. 线性电阻元件:伏安特性曲线为直线,斜率为元件的电阻值;2. 二极管:伏安特性曲线为曲线,具有明显的非线性特性;3. 稳压二极管:伏安特性曲线为曲线,具有稳压特性。
三、实验仪器与设备1. 伏安特性测试仪;2. 直流稳压电源;3. 直流电压表;4. 直流电流表;5. 电阻元件;6. 二极管;7. 稳压二极管;8. 导线;9. 开关;10. 连接板。
1. 将伏安特性测试仪与直流稳压电源、直流电压表、直流电流表连接好;2. 将电阻元件、二极管、稳压二极管依次接入伏安特性测试仪;3. 设置直流稳压电源的输出电压,从低到高逐渐增加;4. 观察并记录伏安特性测试仪显示的电压与电流值;5. 绘制电阻元件、二极管、稳压二极管的伏安特性曲线;6. 分析伏安特性曲线,了解元件的电气性能。
五、实验数据及结果1. 电阻元件伏安特性曲线(1)线性电阻元件伏安特性曲线为直线,斜率为元件的电阻值;(2)曲线通过坐标原点,表示电阻值与电压、电流无关。
2. 二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,随着电压的增加,电流几乎不变。
3. 稳压二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,当电压达到稳压值时,电流急剧增大。
六、实验结论1. 伏安特性实验可以直观地了解元件的电气性能;2. 伏安特性曲线的绘制方法简单易行;3. 通过分析伏安特性曲线,可以判断元件的质量和性能。
实验4 电阻元件伏安特性的测量【实验目的】1.验证欧姆定律;2.掌握测量伏安特性的基本方法;3.学会直流电源、电压表、电流表、电阻箱等仪器的正确使用方法。
【实验仪器】V~特性实验仪1台、专用连接线10根、电源线1根、保险丝(1A,FB型电阻A321已在电源插座中)2根、待测二极管、稳压二极管、小灯泡各2只。
【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。
在欧姆定律R=式中,电压U的单位U⋅I为伏特,电流I的单位为安培,电阻R的单位为欧姆。
一般以电压为横坐标和电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
图4-1 线性元件的伏安特性图4-2 非线性元件的伏安特对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。
这类元件称为线性元件,如图4-1所示。
至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线。
这类元件称为非线性元件,如图4-2所示为某非线性元件的伏安特性。
在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电压和通过的电流均不超过额定值。
此外,还必须了解测量时所需其它仪器的规格(如电源、电压表、电流表、滑线变阻器等的规格),也不得超过其量程或使用范围。
根据这些条件所设计的线路,可以将测量误差减到最小。
2.实验线路的比较与选择a 电流表内接b 电流表外接图4-3 电流表的内、外接线路在测量电阻R 的伏安特性的线路中,常有两种接法,即图4-3 (a)中电流表内接法和图4-3 (b)中电流表外接法。
电压表和电流表都有一定的内阻(分别设为V R 和A R )。
简化处理时直接用电压表读数U 除以电流表读数I 来得到被测电阻值R ,即I U R /=,这样会引进一定的系统性误差。
元件伏安特性的测定实验报告一、实验目的。
本实验旨在通过对电路中元件的伏安特性进行测定,掌握元件的电压-电流关系,并进一步了解元件的特性及其在电路中的应用。
二、实验仪器与设备。
1. 直流稳压电源。
2. 万用表。
3. 电阻箱。
4. 耐压表。
5. 电路连接线。
6. 待测元件。
三、实验原理。
在电路中,元件的伏安特性是指元件的电压与电流之间的关系。
对于电阻元件,其伏安特性为线性关系,即电阻元件的电流与电压成正比。
而对于二极管等非线性元件,其伏安特性则呈现出非线性关系。
四、实验步骤。
1. 将待测元件与电路连接线连接到电路中,注意连接的正确性和稳固性。
2. 调节直流稳压电源,使其输出电压逐渐增加,同时通过万用表记录电路中元件的电压和电流数值。
3. 根据记录的电压-电流数值,绘制出元件的伏安特性曲线。
4. 对非线性元件,如二极管等,进行反向电压测量,记录其反向击穿电压。
五、实验数据与分析。
通过实验测得的数据,我们可以得到元件的伏安特性曲线。
对于电阻元件,其伏安特性曲线为一条直线,而对于二极管等非线性元件,则呈现出非线性特性的曲线。
通过分析伏安特性曲线,我们可以了解元件的工作状态及其在电路中的作用。
六、实验结论。
通过本次实验,我们成功测定了元件的伏安特性,并绘制出了相应的伏安特性曲线。
通过对曲线的分析,我们可以更加深入地了解元件的特性及其在电路中的应用。
同时,我们也掌握了测定伏安特性的实验方法和步骤。
七、实验总结。
本次实验通过测定元件的伏安特性,使我们对元件的工作特性有了更深入的了解。
同时,实验过程中我们也掌握了一定的实验技能和操作方法。
在今后的学习和工作中,我们将能更加熟练地运用这些知识和技能,为电路设计和调试提供更加可靠的支持。
八、参考文献。
[1] 《电路原理与技术》。
[2] 《电子技术基础》。
以上为本次实验的实验报告,希望能对大家的学习和工作有所帮助。
实训三直流电源和电阻元件伏安特性的测定一、实训目的1、测定线性电阻元件、非线性电阻元件及直流电压源、直流电流源的伏安特性,并绘制其特性曲线。
2、掌握万用表和电流表、电路分析实验箱的使用方法。
3、理解理想电压源、电流源的伏安特性。
二、预习要求1、熟悉理想电压源与实际电压源、理想电流源与实际电流源的伏安特性。
2、熟悉电流、电压的测量方法。
3、在原始数据记录纸上画好测试数据的表格。
4、整理出简要的实训步骤。
三、实训器材1、电流表(T51型) 1只2、滑动变阻器(200Ω 1A) 1只3、电阻箱(0—9999Ω) 1只4、万用表(MF47型) 1只5、电路分析实验箱(SG6940A型) 1台四、实训原理及说明1、电阻元件电阻元件的阻值不随其电压或电流改变的,称为线性电阻元件,它遵循欧姆定律。
如果电阻元件的阻值随着其电压或电流而改变,称为非线性电阻元件,它不遵循欧姆不定律。
若把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。
线性电阻元件的伏安特性是通过坐标原点的一条直线,如图4-1所示。
非线性电阻元件,因为它不遵循欧姆定律,电压与电流不成正比,其伏安特性是一条曲线,如图4-2所示。
图4-1 线性电阻的伏安特性曲线图4-2 非线性电阻的伏安特性曲线2.直流电压源理想的直流电压源(简称直流电压源),其端电压是一恒定值,与通过它的电流无关,即不会因为它所接外电路不同而改变,而通过它的电流却取决于它所连接的外电路。
直流电压源的伏安特性如图4-3所示(直线a )。
实际的直流电压源都具有一定的内阻R i ,它可以用恒定的电压U S 和电阻R i 相串联的模型来模拟。
其端电压U=U S -IR i式中I 为流过实际电压源的直流,实际直流电压源的伏安特性曲线如图4-3所示(直线b )。
3.直流电流源理想的直流电流源(简称直流电流源)其输出电流是一恒定值,与它的端电压无关,即不会因为它所接外电路不同而改变,而它的端电压却取决于外电路。
实验十四 电阻伏安特性的测量本实验仪由直流稳压电源、可变电阻器、电流表、电压表及被测元件等五部分组成,可以独立完成对线性电阻元件、半导体二极管、钨丝灯泡等八种电学元件的伏安特性测量。
电压表和电流表是采用指针式微安表头改装的,具有一定的内阻,必须合理配接电压表和电流表,才能使测量误差最小,这样可使初学者在实验方案设计中,得到锻炼。
因此,本实验中有四个实验,针对每一个实验,具体给出了相应的实验要求。
实验14.1 线性电阻器伏安特性测量及测试电路设计一、实验目的按被测电阻大小、电压表和电流表内阻大小,掌握线性电阻元件伏安特性测量的基本方法。
二、实验仪器1. DH6101型电阻元件伏安特性实验仪2. 100Ω锰铜线电阻器,误差≤±0.5%三、实验原理1、 伏安特性在电阻器两端施加一直流电压,在电阻器内就有电流通过。
根据欧姆定律,电阻器电阻值为:I VR =1-1上式中 R —电阻器在两端电压为V ,通过的电流为I 时的电阻值,Ω; V —电阻器两端电压,V ; I —电阻器内通过的电流I 。
欧姆定律公式1-1表述成下式:V R I 1=以V 为自变量,I 为函数,作出电压 电流关系曲线,称为该元件的伏安特性曲线。
对于线绕电阻、金属膜电阻等电阻器 ,其电阻值比较稳定,其伏安特性曲线 是一条通过原点的直线,即电阻器内通过 的电流与两端施加的电压成正比,这种电阻器也称为线性电阻器。
图1-1 线性元件伏安特性曲线 2、 线性电阻的伏安特性测量电路的设计当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路都不会带来附加测量误差。
图1-2 电流表外接测量电路 图1-3 电流表内接测量电路被测电阻I U R =。
实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为R U 。
因为R I和R U 的存在,如果简单地用公式I UR =计算电阻器电阻值,必然带来附加测量误差。
为了减少这种附加误差,测量电路可以粗略地按下述办法选择:A. 当R U >>R ,R I 和R 相差不大时,宜选用电流表外接电路,此时R 为估计值;B. 当R >>R I ,R U 和R 相差不大时,宜选用电流表内接电路,C. 当R >>R I ,R U >>R 时,必须先用电流表内接和外接电路作试探性测试而定。
实验一 基本仪器的使用及电阻元件伏安特性的测绘在电学实验中经常要对电阻进行测量。
通过一个电阻元件的电流随外加电压的变化关系曲线,称为伏安特性曲线。
从伏安特性曲线所遵循的规律,可以得知该电阻元件的导电特性,以便确定它在电路中的作用。
一、实验目的1. 学习常用电磁学仪器仪表和稳压电源的正确使用方法。
2. 掌握测量的基本技能。
3. 测定线性电阻和非线性电阻的伏安特性。
4. 理解伏安特性、线性元件、非线性元件三个基本概念。
二、实验仪器稳压电源、数字万用表、直流毫安表(10mA 、50mA 量程)、直流微安表、导线、可调电阻、200/2000欧的电阻、二极管等。
三、实验原理任何一个二端元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I=f (V)来表示,即用I-V 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
1. 线性元件:线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图(a)所示,该直线的斜率等于该电阻器的电阻值。
2. 非线性元件:一般的半导体二极管是一个非线性电阻元件,其特性如图(c)。
正向压降很小(一般的锗管约为0.2~0.3V ,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
(c )(a )(b )U四、实验内容步骤1.测定线性电阻的伏安特性(1)取200欧的一只电阻,按图(d)联接好电路,调节电源电压分别为0V,2V,4V,6V,8V,10V,用50mA电流表测定对应的电流值,填入表格中。
(2)将200欧的电阻换成2000欧的电阻,重复上述步骤。
(3)绘制两电阻的伏安特性曲线并验证I=f (V)。
(d)表1-1表1.22. 测定晶体二极管伏安特性(1)正向特性:根据图联接好电路后,可变电阻最大值为1K欧,R取200欧。