电路分析实验报告(电阻元件伏安特性的测量)
- 格式:doc
- 大小:39.00 KB
- 文档页数:2
实验报告课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.熟悉电路元件的特性曲线;2.学习非线性电阻元件特性曲线的伏安测量方法;3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。
二、实验内容和原理1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。
例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。
电流越大、温度越高,对应的灯丝电阻也越大。
一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。
该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。
当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。
电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。
线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。
该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。
非线性电阻的伏安特性在u-i 平面上是一条曲线。
普通晶体二极管的特点是正向电阻和反向电阻区别很大。
正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。
第1篇实验名称:电学元件伏安特性测量与非线性电路混沌现象研究实验日期:2023年X月X日实验地点:物理实验室实验人员:XXX、XXX、XXX一、实验目的1. 研究电学元件的伏安特性,了解其电流与电压之间的关系。
2. 分析非线性电路混沌现象,探究混沌产生的条件和影响因素。
3. 提高实验操作技能,培养科学思维和严谨态度。
二、实验原理1. 伏安特性:电学元件的伏安特性是指电流与电压之间的关系。
通过测量不同电压下元件的电流值,可以绘制出伏安特性曲线,从而了解元件的性质。
2. 非线性电路混沌现象:非线性电路中的混沌现象是指系统在某一初始条件下,随着时间的推移,其状态轨迹会呈现复杂、无规律的运动。
混沌现象具有敏感依赖初始条件、长期行为不可预测等特点。
三、实验仪器与材料1. 伏安特性测试仪2. 直流稳压电源3. 电阻箱4. 电流表5. 电压表6. 混沌电路实验装置7. 示波器8. 实验线路板9. 电线连接线四、实验步骤1. 伏安特性测量(1)搭建伏安特性测试电路,将电阻箱接入电路,调节电压,记录不同电压下电阻箱的电流值。
(2)根据记录的数据,绘制伏安特性曲线,分析元件的性质。
2. 非线性电路混沌现象研究(1)搭建混沌电路实验装置,连接好电路。
(2)打开示波器,调整参数,观察混沌现象。
(3)改变电路参数,研究混沌产生的条件和影响因素。
五、实验结果与分析1. 伏安特性测量结果根据实验数据,绘制伏安特性曲线,分析元件的性质。
例如,测量一个线性电阻的伏安特性,发现电流与电压成正比,符合欧姆定律。
2. 非线性电路混沌现象研究结果(1)观察混沌现象:在混沌电路实验装置中,观察到电路状态轨迹呈现复杂、无规律的运动。
(2)研究混沌产生的条件和影响因素:通过改变电路参数,发现混沌现象的产生与电路参数有关。
例如,当电路参数达到某一特定值时,电路状态轨迹开始呈现混沌现象。
六、实验总结1. 通过本次实验,掌握了电学元件伏安特性的测量方法,了解了电流与电压之间的关系。
本科生实验报告实验课程电路分析学院名称信息科学与技术学院专业名称物联网工程学生姓名葛小源学生学号201513060114指导教师阴明实验地点6B602实验成绩二〇一六年三月——二〇一六年六月实验一、电路元件伏安特性的测绘摘要实验目的1、学会识别常用电路元件的方法。
2、掌握线性电阻、非线性电阻元件伏安特性曲线的测绘。
3、掌握实验台上直流电工仪表和设备的使用方法。
实验步骤测量线性电阻的伏安特性按图接线。
调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表中记下相应的电压表和电流表的读数。
R=900Ω时:R=800Ω时:U白炽灯时:伏安特性曲线如下:为IN4007时:二极管的伏安特性曲线如下:实验思考:1、线性与非线性电阻概念是什么?答:电阻两端的电压与通过它的电流成正比,其伏安特性曲线为直线这类电阻称为线性电阻,其电阻值为常数;反之,电阻两端的电压与通过它的电流不是线性关系称为非线性电阻,其电阻值不是常数。
一般常温下金属导体的电阻是线性电阻,在其额定功率内,其伏安特性曲线为直线。
象热敏电阻、光敏电阻等,在不同的电压、电流情况下,电阻值不同,伏安特性曲线为非线性。
2、电阻器与二极管的伏安特性有何区别?答:电阻器流过的电流,正比于施加在电阻器两端的电压,画出的V-A曲线将是一条直线,所以称之为线性元件;二极管流过的电流,会随施加在两端的电压增长,但是增长的倍数是变化的,电压越高,增长的倍数越大,画出的V-A曲线将是一条曲线(类似于抛物线或者N次方线),所以称之为非线性元件。
3、稳压二极管与普通二极管有何区别,其用途如何?答:普通二极管一般都是作为整流、检波使用,耐压值较高。
而稳压管一般都是用于稳压,故耐压值较低,正常使用时,要工作于反向击穿状态。
实验二、基尔霍夫定律的验证(一)摘要实验目的:1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2、学会用电流插头插座测量各支路电流方法。
实验报告实验报告专业***** 班级******** 姓名**** 学号******实验课程电阻元件特性的研究指导教师实验日期2017.6.8同实验者实验项目测试线性和非线性元件的 V-A特性实验设备及器材1. 0~20V可调直流稳压电源(带限流保护)。
2.量程可变标准数字电流表(200µA、2mA、20mA、200mA四档,三位半数字显示,精度0.5%);三位半数显直流电压表(可变量程2V、20V,精度0.5%)。
3.被测元件(金属膜电阻、二极管、稳压管、12V小灯泡)及8根连线。
一、实验目的测试线性和非线性元件的V-A特性。
1.金属膜电阻的V-A特性。
2.二极管的正向和反向V-A特性。
3.稳压管的正向和反向V-A特性。
4.小灯泡的V-A特性。
二、实验原理把直流电压加到某个电阻性元件上,随着电压V的增加,电流I也增加,电压U 和电流I的比值不一定是一个常数。
当U和I成正比,二者之比为常数时,该元件被称为线性电阻元件,而当两者的比值不是一个常数时,则这种元件被称为非线性电阻元件。
把电压U和电流I的对应关系作图,得到的曲线称为该元件的伏安特性曲线。
曲线上某点的坐标值,电压和电流两者之比是一个电阻量,这个电阻称为等效电阻或静态电阻。
这种通过测量电压和电流测出电阻量的方法称为伏安法。
测量V-A特性的电路如图1、图2所示。
图中E为可调直流稳压电源,R为限流电阻,RL为被测元件,○V为三位半数显直流电压表,○A为三位半数显直流电流表。
测量时,当电压表或电流表显示1或-1时,表示已超过量程范围,必须扩大量程。
图1称为电流表内接,图2称为电流表外接。
由于同时测量电压和电流,无论哪种电路都会产生接入误差,现分析如下:1.电流表内接由图1可知,电流表测出流经RL的电流,但电压表测出的是加在RL和电流表两者的电压之和,即由于电流表的接入产生电压的测量误差UA。
从相对接入误差UA/UD可知,若电流表内阻RA<<RL,则UA<<UD,相对接入误差很小;反之若电流表内阻较大,就会造成不小的接入误差,所以电流表的内阻越小越有利于测量。
大学伏安特性实验报告1. 引言伏安特性实验是大学电路实验中的基础实验之一,通过该实验可以研究电路中电压和电流之间的关系。
本报告旨在介绍大学伏安特性实验的步骤和实验结果,并对实验中的一些现象进行分析和讨论。
2. 实验步骤2.1 准备材料在进行伏安特性实验前,我们需要准备以下材料:•直流电源•电阻箱•电流表•电压表•变阻器•连接线等2.2 搭建电路根据实验要求,我们将电源、电阻箱、电流表和电压表连接成串联电路。
电流表应连接在电路中的串联位置,电压表则连接在电路两端。
2.3 测量数据我们将逐步调节电阻箱中的阻值,并记录相应的电压和电流数值。
从小到大依次调节阻值,每次记录好数据后再进行下一次调节。
2.4 绘制伏安特性曲线根据实验测量得到的电压和电流数据,我们可以绘制伏安特性曲线。
横坐标表示电压,纵坐标表示电流,通过连接每个数据点,我们可以得到一条曲线。
3. 实验结果与分析我们根据上述步骤进行了大学伏安特性实验,并得到了一组数据。
根据这组数据,我们绘制了伏安特性曲线。
结果显示,伏安特性曲线呈现出一条非线性的关系。
随着电压的增加,电流也随之增加,但并非呈线性关系。
这符合我们对电阻的理解,即电阻对电流的影响是非线性的。
我们还观察到在实验过程中,当电阻箱的阻值较小时,电流的变化较小;而当电阻箱的阻值较大时,电流的变化较大。
这说明了电阻值对电流的影响程度与电阻值本身成反比。
另外,我们还发现在一定范围内,电压的增加并不会导致电流的无限增加。
这是因为电路中存在一定的电阻,当电压达到一定值后,电路中的电阻限制了电流的增长。
4. 结论通过大学伏安特性实验的实际操作和数据分析,我们得出以下结论:•伏安特性曲线呈现非线性关系,电流随电压的增加而增加,但增长的程度是非线性的。
•电阻值对电流的影响程度与电阻值本身成反比。
•在一定范围内,电压的增加并不会导致电流的无限增加,电路中的电阻限制了电流的增长。
这些结论对于我们理解电路中电压和电流的关系,以及电阻对电流的影响具有重要意义。
实验08 电路元件伏安特性地研究电学元件是构成电路地基本要素,而其伏安特性又是电学性质中地重中之重,因此对其物理性质地研究是电学中最基本也是最重要地部分之一.通常以电压为横坐标,电流为纵坐标作出元件地电压~电流关系曲线,叫做该元件地伏安特性曲线.如果元件地伏安特性曲线是一条直线,说明通过元件地电流与元件两端地电压成正比,则称该元件为线性元件(例如碳膜电阻、金属膜电阻等);如果元件地伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管).本实验是通过测试电学元件地伏安特性曲线,初步了解电学元件地结构及原理、熟悉其基本性能和掌握其正确地使用方法.【实验目地】1、学会识别部分常用电学元件地方法.2、掌握线性电阻、非线性电学元件伏安特性地测试法.3、通过测定电学元件上电压与电流地关系,验证部分电路欧姆定律.4、熟悉误差分析地基本方法.【实验仪器】TKVA-1型线性与非线性元件V-A 特性实验仪,包括直流稳压电源(0-12 V )、元件箱、直流数字电压表、直流数字毫安表和图视仪等.【实验原理】在温度一定地情况下,当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件地电阻.若元件两端地电压与通过它地电流不成正比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件.一般金属导体电阻是线性电阻,它与外加电压地大小和方向无关,其伏安特性曲线是一条直线.电阻是导体材料地重要特性,在电学实验中经常要对电阻进行测量.测量电阻地方法有多种,伏安法是常用地基本方法之一.所谓伏安法,就是运用欧姆定律,测出电阻两端地电压V 和其上通过地电流I ,根据 IV R (8-1) 即可求得阻值R.也可运用作图法,作出伏安特性曲线,从曲线上求得电阻地阻值.对有些电阻,其伏安特性曲线为直线,称为线性电阻,如常用地碳膜电阻、线绕电阻、金属膜电阻等.另外,有些元件,伏安特性曲线为曲线,称为非线性电阻元件,如灯泡、晶体二极管、稳压管、热敏电阻等.非线性电阻元件地阻值是不确定地,只有通过作图法才能反映它地特性.用伏安法测电阻,原理简单,测量方便,但由于电表内阻接入地影响,给测量带来一定系统误差.在电流表内接法中,如图8-1所示.由于电压表测出地电压值V 包括了电流表两端地电压,因此,测量值要大于被测电阻地实际值.由⎪⎪⎭⎫ ⎝⎛+=+=+==x mA x mA x x mA x x R R R R R I V V I V R 1 (8-2) 可见,由于电流表内阻不可忽略,故给测量带来一定地误差.在电流表外接法中,如图8-2所示.由于电流表测出地电流I 包括了流过电压表地电流,因此,测量值要小于被测电阻地实际值.由⎪⎪⎭⎫ ⎝⎛+=+=+==V x x V x V x x x R R R R R I I V I V R 1111 (8-3)可见,由于电压表内阻不是无穷大,故给测量带来一定地误差.上述两种连接电路地方法,都给测量带来一定地系统误差,即测量方法误差.为此,必须对测量结果进行修正.其修正值为图8-2 电流表外接图8-1 电流表内接R R R x x -=∆ (8-4)其中R 为测量值,x R 为实际值.为了减小上述误差,必须根据待测阻值地大小和电表内阻地不同,正确选择测量电路.当mA x R R >>且V x R R <时,选择电流表内接法.V x R R <<且mA x R R >时,选择电流表外接法.mA x R R >>,V x R R <<时,两种接法均可.经过以上选择,可以减小由于电表接入带来地系统误差,但电表本身地仪器误差仍然存在,它取决于电表地准确度等级和量程,其相对误差为xx x x I I V V R R ∆+∆=∆ (8-5) 式中I ∆和V ∆为电流表和电压表允许地最大示值误差.【实验内容】一、必做部分:TKV A-1型线性与非线性元件V-A 特性实验仪面板如图8-3所示:图8-3本实验仪器主要有直流稳压电源(0-12V )、元件箱、直流数字电压表、直流数字毫安表和图示仪组成.元件箱中有线性电阻、光敏电阻、不同地二极管和小灯泡等八个元器件,实验时根据要求选择若干进行.直流电流表分0.2、2、20和200mA 四档,直流电压表分0-2V 和0-20V 两档(有开关选择).1.测量线性电阻器地伏安特性(1)电流表内接法根据图8-1连接好电路.电阻x R 为100K ,每改变一次电压V 值,读出相应地电流I 值,填入表8-1中,作出伏安特性曲线,并从曲线上求得电阻值.(2)电流表外接法根据图8-2连接好电路,重复实验步骤(1),数据表格自拟.(3)根据电表内阻地大小,分析上述两种测量方法中,哪种电路地系统误差较小.2.测量稳压二极管地伏安特性(1)稳压管地稳压特性稳压管实质上就是一个面结型硅二极管,它具有陡峭地反向击穿特性,工作在反向击穿状态.在制造稳压管地工艺上,使它具有低压击穿特性.稳压管电路中,串入限流电阻,使稳压管击穿后电流不超过允许地数值,因此击穿状态可以长期持续,并能很好地重复工作而不致损坏.稳压管地特性曲线如图8-4所示,它地正向特性和一般硅二极管一样,但反向击穿特性较陡.由图可见,当反向电压增加到击穿电压以后,稳压管进入击穿状态在曲线地AB 段,虽然反向电流在很大地范围内变化,但它两端地电压x V 变化很小,即x V 基本恒定.利用稳压管地这一特性,可以达到稳压地目地.图8-4稳压管特性曲线(2)稳压管地参数1)稳定电压x V .即稳压管在反向击穿后其两端地实际工作电压.这一参数随工作电流和温度地不同略有改变,并且分散性较大,例如2CW14型地x V =6~7.5V.但对每一个管子而言,对应于某一工作电流,稳定电压有相应地确定值.2)稳定电流x I .即稳压管地电压等于稳定电压时地工作电流.3)动态电阻x r .是稳压管电压变化和相应地电流变化之比,即x x x I V r ∆∆=/,显然,x V 越小,稳压效果越好,动态电阻地数值随工作电流地增加而减小.但当工作电流s I >5~10mA 以后,x r 减小地不显著,而当x I <1mA 时,x r 明显增加,阻值较大.4)最大稳定电流max x I 和最小稳定电流min x I .max x I 是指稳压管地最大工作电流,超过此值,即超过了管子地允许耗散功率;min x I 是指稳压管地最小工作电流,低于此值,x V 不再稳定,常取min x I =1~2mA.(3)稳压管伏安特性测定地实验电路实验电路如图8-5所示.E 为0~12V 可调直流稳压电源,R 为限流电阻器.(4)测量稳压管地正向特性1)按图8-5连接电路,R 阻值调到最大,可调稳压电源地输出为零.2)增大输出电压,使电压表地读数逐渐增大,观察加在稳压管上电压随电流变化地现象,通过观察确定测量范围,即电压与电流地调节范围.3)测定稳压管地正向特性曲线,不应等间隔地取点,即电压地测量值不应等间隔地取,而是在电流变化缓慢区间,电压间隔取地疏一些,在电流变化迅速区间,电压间隔取得密一些.如测试地2CW14型稳压管,电压在0V~0.7V 区间取3~5个点即可.(5)测量稳压管地反向特性1)将稳压管反接;2)定性观察被测稳压管地反向特性,通过观察确定测量反向特性时电压地调节范围(即该型号稳压管地最大工作电流max x I 所对应地电压值).3)测量反向特性,同样在电流变化迅速区域,电压间隔应取得密一些.二、选做部分:测量小灯炮地伏安特性给定一只8V/0.1A 小灯炮,已知UH=12伏,IH=100mA ,起始电流为20mA ,毫安表内阻为1Ω,电压表内阻为1M Ω.要求:1)自行设计测量伏安特性地线路;2)测量小灯泡地伏安特性;3)绘制小灯泡地伏安特性曲线;4)判定小灯炮是线性元件还是非线性元件. 【注意事项】1.使用电源时要防止短路,接通和断开电路前应使输出为零,先粗调然后再慢慢微调.2.测稳压二极管(IN4728)正向特性时,稳压电源输出应由小至大逐渐增加,应时刻注意电流表读数不超过30mA ,稳压源输出端切勿碰线短路.3.测量稳压管伏安特性时,电路中电流值不应超过其最大稳定电流max x I .图8-5 稳压管地正向特性测量图4.进行不同实验时,应先估算电压和电流值,合理选择仪表地量程,勿使仪表超量程,仪表地极性亦不可接错.5.如果要测定2AP9检波二极管地伏安特性,正向特性地电压值可取0,0.10,0.13,0.15,0.17,0.19,0.21,0.24,0.30(V),反向特性地电压值取0,2,4,6,8,10(V).【思考题】1、 线性电阻与非线性电阻地概念是什么?电阻器和二极管地伏安特性有何区别?2、 设某器件伏安特性曲线地函数式为()I f V ,试问在逐点绘制曲线时,其坐标变量应如何放置?3、 稳压二极管与普通二极管有何区别?其用途如何?版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.TIrRG 。
大学物理实验伏安特性曲线实验报告一、实验目的1、了解电阻元件的伏安特性,加深对欧姆定律的理解。
2、掌握电流表、电压表、滑线变阻器等仪器的使用方法。
3、学会用伏安法测量电阻,并分析测量误差。
4、培养学生的实验操作能力、数据处理能力和科学思维能力。
二、实验原理1、欧姆定律导体中的电流 I 与导体两端的电压 U 成正比,与导体的电阻 R 成反比,即 I = U / R 。
2、伏安特性曲线用纵坐标表示电流 I,横坐标表示电压 U,描绘出电流随电压变化的曲线,称为伏安特性曲线。
对于线性电阻元件,其伏安特性曲线是一条过原点的直线;对于非线性电阻元件,其伏安特性曲线不是直线。
3、测量电路(1)电流表内接法当被测电阻的阻值较大时,采用电流表内接法。
此时,电压表测量的是电阻和电流表两端的电压之和,测量值大于电阻两端的实际电压,测量结果偏大。
(2)电流表外接法当被测电阻的阻值较小时,采用电流表外接法。
此时,电流表测量的是通过电阻和电压表的电流之和,测量值大于通过电阻的实际电流,测量结果偏小。
三、实验仪器直流电源、电压表、电流表、滑线变阻器、定值电阻、开关、导线若干。
四、实验步骤1、按照实验电路图连接电路,注意电表的量程选择和正负接线柱的连接,滑线变阻器的滑片置于阻值最大处。
2、采用电流表内接法测量定值电阻的伏安特性。
闭合开关,调节滑线变阻器的滑片,使电压表的示数从 0 开始逐渐增大,每隔一定电压值记录一次电流表和电压表的示数,直到电压表的示数达到电源电压。
3、采用电流表外接法测量定值电阻的伏安特性,重复步骤 2。
4、以电压为横坐标,电流为纵坐标,分别绘制电流表内接法和外接法的伏安特性曲线。
5、分析实验数据,计算电阻的测量值,并与电阻的标称值进行比较,分析误差产生的原因。
五、实验数据记录与处理1、电流表内接法|电压 U(V)|电流 I(A)||||| 05 | 005 || 10 | 010 || 15 | 015 || 20 | 020 || 25 | 025 |根据实验数据,绘制伏安特性曲线如下:此处插入电流表内接法的伏安特性曲线图通过计算,电阻的测量值为:R = U / I =(05 + 10 + 15 + 20 + 25)/(005 + 010 + 015 + 020 + 025)=100 Ω2、电流表外接法|电压 U(V)|电流 I(A)||||| 05 | 006 || 10 | 012 || 15 | 018 || 20 | 024 || 25 | 030 |绘制伏安特性曲线如下:此处插入电流表外接法的伏安特性曲线图电阻的测量值为:R = U / I =(05 + 10 + 15 + 20 + 25)/(006 + 012 + 018 + 024 + 030)=83 Ω3、误差分析(1)电流表内接法误差分析由于电压表测量的是电阻和电流表两端的电压之和,测量值大于电阻两端的实际电压,导致电阻的测量值偏大。
伏安特性实验报告总结引言:伏安特性实验是电学实验中常见的一种实验,通过测量电流和电压之间的关系,探索电阻、电流和电压之间的规律。
本文将对进行的伏安特性实验进行总结,并对实验结果进行分析与讨论。
实验目的:本次伏安特性实验的目的是研究电阻的伏安特性,并通过实验数据验证欧姆定律。
欧姆定律是电学中最为基础的定律之一,它描述了理想电阻的电流和电压之间的线性关系。
通过本次实验,我们可以对电阻的伏安特性有更深入的认识,并且通过实验结果与理论值的比较,检验欧姆定律的有效性。
实验装置与方法:实验所用的装置主要包括电压源、电阻、导线和电流表。
首先,将电压源与电阻通过导线连接起来,然后用电流表测量电阻上的电流,并用电压表测量电阻两端的电压。
根据测得的电流和电压数据,我们可以绘制电压与电流的伏安特性曲线。
实验结果与分析:通过实验数据的采集和处理,可以绘制出一组点集合,代表电压与电流的关系。
进一步分析这些数据,可以得到电阻的伏安特性曲线。
实验结果显示,在我们所使用的电压范围内,电流与电压之间呈现线性关系,验证了欧姆定律的有效性。
此外,根据曲线的斜率,我们可以计算出电阻的数值。
通过与理论值进行比较,可以进一步检验欧姆定律的准确性。
实验误差与改进:在实验过程中,由于各种因素的干扰,我们难免会遇到一些误差。
例如,由于导线本身的电阻,较大电流通过时会产生一定的热量,导致电阻值略有偏差。
为了减小误差,可以使用较精确的测量仪器,保持电阻附近的环境温度稳定,并进行多次实验取平均值。
实验的应用:伏安特性实验不仅是电学课程的基础内容,也是工程领域中诸如电路设计、电力传输等方面的重要基础。
通过对电阻的伏安特性的研究,我们可以更好地理解电流和电压之间的关系,从而应用到电路设计和电力传输中去。
此外,伏安特性实验还可以用来检测电器设备的工作状态,了解其性能和特点。
结论:通过本次伏安特性实验,我们深入了解了电阻的伏安特性,并验证了欧姆定律在我们所使用的电压范围内的有效性。
伏安特性曲线实验报告引言:伏安特性曲线是电学实验中常见的一种实验方法,用于研究电流、电压之间的关系。
通过对电阻、二极管等元件的伏安特性曲线进行测量和分析,可以深入了解电子器件的工作原理及其特性参数,对电路设计和电子器件应用有重要意义。
本实验旨在通过测量不同电阻和二极管的伏安特性曲线,探究电路中的电流和电压之间的关系。
实验部分:实验材料:1. 直流电源2. 模拟万用表3. 电阻器(不同阻值)4. 二极管6. 连线电缆实验步骤:1. 将实验所需材料准备齐全,确保电源、万用表和电阻器、二极管无损坏或质量问题。
2. 将电源的正极与模拟万用表的正极连接,电源的负极与模拟万用表的负极连接。
确保连接正确且牢固。
3. 将模拟万用表的电流档位调整至合适范围,并设置为直流电流的测量模式。
4. 将电阻器的一个端口连接到电源的负极,另一个端口连接到模拟万用表的负极。
5. 逐渐调整电源的电压输出,同时观察模拟万用表的读数,并记录下电压和电流的数值。
6. 根据实验记录的数据,绘制电阻器的伏安特性曲线。
实验结果:通过实验得到了电阻器的伏安特性曲线。
在图中可以清晰地观察到电流和电压之间的线性关系,符合欧姆定律。
当电压逐渐增加时,电流也随之增加,呈现出正比关系。
这证明了电阻器的电阻值在实验过程中保持稳定。
接下来,我们进行了对二极管的伏安特性曲线实验。
实验步骤与结果:1. 将二极管的正极连接到电源的正极,负极连接到模拟万用表的正极。
2. 逐渐调节电压输出,同时观察模拟万用表的读数,并记录下电压和电流的数值。
3. 根据实验记录的数据,绘制二极管的伏安特性曲线。
通过实验我们得到了二极管的伏安特性曲线。
曲线在低电压下呈现为平坦的状态,表明二极管处于截止状态,不导电。
一旦电压超过二极管的正向电压降,曲线就快速上升,说明二极管开始导通。
在正向电压下,电流增加迅速,但是随着电压的进一步增加,电流增速逐渐变缓。
讨论和结论:通过对电阻器和二极管的伏安特性曲线实验,我们可以得出以下结论:1. 电阻器的伏安特性曲线呈现线性关系,符合欧姆定律。
电学元件伏安特性的测量实验报告实验室时间:××年×月×日实验目的:1. 掌握熟悉U-I特性曲线的基本概念及特点;2. 初步掌握测量电阻、电容、二极管及晶体管的U-I特性曲线和参数。
实验设备:1. 电压表、电流表;2. 直流电源、电阻箱、电容箱、二极管、晶体管等元件;3. 连线板等。
实验原理:伏安特性曲线反映的是电阻、电容、电子器件(如二极管、晶体管)等物质导电性能及其应用特性。
为了研究伏安特性曲线,必须对不同种类的元器件作出不同的电路连接方式。
1. 测量电阻的U-I特性曲线电流强度与电阻的电压成正比,可用相对静态的实验来得到系数值,这种关系在电阻值较小,电流较大时不成立。
用伏安法进行测量,将待测电阻 R 内加上串联电压 E,从而测定系统的电压和电流,并绘制伏安特性曲线的直线部分。
电容 U-I 特性曲线可用图示所示的方法加以测定:取正放极连接正端,靠中间放置电阻进行电压分压使 Uc=0.2U0,按启动键开启,记录并得到测量数据。
二极管的两端电压与电流成非线性关系,需要一些复杂的电路,比如在电压加一定峰值后,不论将电压值加大或减小,二极管都仅仅流过一个定值电流的电路。
晶体管是有放大和开关作用的元件,晶体管有基极,发射极和集电极三个电极,电流和电压之间的关系比较复杂需要一些分流分压的技术方法。
实验过程:构成实验电路如图所示,电源的电压设为1V,通过VCM 将电源输出的电压分为 R1 和R2 上,记录输出的电压和流过的电流,根据实际得到伏安特性曲线如下:电阻值R(Ω) 测量电压 V(mV) 测量电流 I(mA)10 100 1020 200 1040 400 10电容的阻抗是由电容的电容值和信号频率决定的,用升压和降压并计算所用时间的方法来获得一定频率下的 U-I 特性曲线,取电容电压0.2U0,同时使电容电压保持稳定,记录输出电压和流过电容的电流,根据实际得到伏安特性曲线如下:二极管的 U-I 特性曲线是由电路配置和外加电压决定的,二极管整流电路的 U-I 特性曲线如下:取晶体管三极管为配置,设置主控电压 V0 = 0.6V,分别记录三个节点的电压和流过晶体管的电流,然后绘制输出的 U-I 特性曲线如下:实验总结:经过实验,我们熟悉了伏安特性曲线的基本概念及特点,初步掌握了测量电阻、电容、二极管及晶体管的 U-I 特性曲线和参数的方法。
伏安特性实验报告总结一、引言伏安特性实验是电路分析的一项重要实验内容,通过测量电流和电压的关系,可以得到电路元件的伏安特性曲线。
本次实验旨在通过实验数据的收集和分析,深入了解电流和电压之间的相互关系,探究电路中的电阻、电流源和电压源等基本概念。
二、实验设计与方法本次实验使用了直流电路,主要包括直流电源、电阻、电流表和电压表。
通过改变电路中的电阻值,测量电流和电压的变化,进而绘制伏安特性曲线。
三、实验结果与分析通过实验数据的记录和分析,我们得到了如下的实验结果:1. 当电路中的电阻增加时,电流的值会逐渐减小,呈现出线性关系。
2. 在不同电压情况下,电流的变化符合欧姆定律,即电流和电压之间存在线性关系。
3. 当电压达到一定值时,电流逐渐趋于饱和,不再随电压的增加而线性增大,而是趋于一个常数值。
基于以上实验结果,我们可以得出以下结论:1. 电路中的电流和电压之间遵循欧姆定律,即电流与电压成正比,电阻是恒定的。
2. 在伏安特性曲线的线性区域,电阻的值可以通过斜率来计算。
3. 电流的饱和现象可能是由于电阻的内部结构导致的,当电流太大时,会遇到瓶颈,无法继续增大。
四、存在的问题与改进在实验过程中,我们也发现了一些问题:1. 实验中的测量误差可能会对结果产生一定影响,尤其是在小电流值的测量上。
2. 实验数据的收集和分析过程中,可能存在一定的主观性,导致结果的不准确。
为了改进实验,我们可以采取以下措施:1. 加强对仪器的使用培训,提高测量的准确性。
2. 多次实验,取平均值来减小误差的影响。
3. 使用更精确的仪器和测量方法来提高实验结果的准确性。
五、实验的意义与应用通过伏安特性的实验研究,我们可以更好地理解电阻、电流和电压之间的关系,并为电路设计和分析提供一定的理论依据。
在实际应用中,伏安特性的研究可以帮助我们:1. 验证电路中元件的参数,比如电阻值、电流源和电压源的特性。
2. 分析电路中的功率分布和能量损失情况,优化电路结构。
实验4 电阻元件伏安特性的测量【实验目的】1.验证欧姆定律;2.掌握测量伏安特性的基本方法;3.学会直流电源、电压表、电流表、电阻箱等仪器的正确使用方法。
【实验仪器】V~特性实验仪1台、专用连接线10根、电源线1根、保险丝(1A,FB型电阻A321已在电源插座中)2根、待测二极管、稳压二极管、小灯泡各2只。
【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。
在欧姆定律R=式中,电压U的单位U⋅I为伏特,电流I的单位为安培,电阻R的单位为欧姆。
一般以电压为横坐标和电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
图4-1 线性元件的伏安特性图4-2 非线性元件的伏安特对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。
这类元件称为线性元件,如图4-1所示。
至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线。
这类元件称为非线性元件,如图4-2所示为某非线性元件的伏安特性。
在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电压和通过的电流均不超过额定值。
此外,还必须了解测量时所需其它仪器的规格(如电源、电压表、电流表、滑线变阻器等的规格),也不得超过其量程或使用范围。
根据这些条件所设计的线路,可以将测量误差减到最小。
2.实验线路的比较与选择a 电流表内接b 电流表外接图4-3 电流表的内、外接线路在测量电阻R 的伏安特性的线路中,常有两种接法,即图4-3 (a)中电流表内接法和图4-3 (b)中电流表外接法。
电压表和电流表都有一定的内阻(分别设为V R 和A R )。
简化处理时直接用电压表读数U 除以电流表读数I 来得到被测电阻值R ,即I U R /=,这样会引进一定的系统性误差。
一、实验目的:
(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。
(2)学习直流稳压电源、万用表、电压表的使用方法。
二、实验原理及说明
(1)元件的伏安特性。
如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。
(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。
元件的电阻值可由下式确定:R=u/i=(m u/m i)tgα,期中m u和m i分别是电压和电流在u-i平面坐标上的比例。
三、实验原件
U s是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw
四、实验内容
(1)线性电阻元件的正向特性测量。
(2)反向特性测量。
(3)计算阻值,将结果记入表中
(4)测试非线性电阻元件D3的伏安特性
(5)测试非线性电阻元件的反向特性。
表1-1 线性电阻元件正(反)向特性测量
表1-5 二极管IN4007正(反)向特性测量
五、实验心得
(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时一定要考虑正确使用导线。