平方根 立方根 优秀课件ppt
- 格式:ppt
- 大小:4.14 MB
- 文档页数:93
第2讲平方根与立方根⎧⎪⎪⎪⎨⎪⎪⎪⎩概念性质算术平方根、平方根、立方根化简运算综合1. 什么是相交线?相交线模块学习了哪些概念?2. 平行线有哪些性质?怎么判定两条直线平行?3. 平行线相关求角度的题型应如何做辅助线?前章回顾知识网络图中考说明2.1定义及性质一.算术平方根1.概念:一般地,如果一个正数x的平方等于a,即0a≥,那么这个正数x叫做a的算术平方根. 2.表示方法:一个非负数a a”,a叫做被开方数.3.规定:0的算术平方根是0.4.特别的,一个正数的算术平方根仍是正数,负数没有算术平方根.5.0≥(0a≥)6.算术平方根的运算(10a≥,0b≥);(2=(0a≥,0b>)7.常见数的平方与算术平方根二.1.概念:一般地,如果一个数的平方等于a,那么这个数叫做的平方根(或二次方根).这就是说,若0a≥,则x就叫做a的平方根.2.表示方法:一个非负数a的平方根记为为“”,读作“正负根号a”.3.①一个正数a有两个互为相反数的平方根,其中正的平方根叫做a的算术平方根.②0有一个平方根,就是0.③负数没有平方根.4.平方根的计算:求一个非负数的平方根的运算,叫做开平方.(1)开平方与加、减、乘、除、乘方一样,是一种运算,它的运算结果是平方根(2)开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数概念辨析是不是另一个数的平方根或算术平方根.(3)平方与开平方的运算:①2a=(0a≥);(0)0 (0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩a=可用口诀“出门摘帽带夹板”帮助记忆.三.立方根1.概念:如果一个数的立方等于a,那么这个数叫做a的立方根(或三次方根).这就是说,若3,x a=则x就叫做a的立方根.2.表示方法:一个数a,读作“三次根号a”,其中a叫做被开方数,“3”叫做根指数,不能省略.注意:前面学习的其实省略了根指数“2”3.任何一个数都有立方根,且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.4.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算.(1)可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.(2)立方与开立方的运算①3a=;②a=5.常见数的立方与立方根四.平方根与立方根1.区别:(1)根指数不同:平方根的根指数是2,通常省略不写;立方根的根指数是3,却不能省略.(2)被开方数取值范围不同:平方根中被开方数必须是非负数;立方根中被开方数可以为任何数.(3)平方的结果不同:平方根的结果除0之外,还有两个互为相反数的结果;立方根的结果只有一个.(4)平方根等于本身的数是0;算术平方根等于它本身的数是0,1; 立方根等于它本身的数是0,1,1-; 2. 联系:(1) 平方根与立方根相等的数是0.(2) 平方根与立方根都是与乘方运算互为逆运算.【例1】 判断题:(1( )(2)2a 的算术平方根是a . ( ) (3)2a -没有算术平方根.( )(4)如果两个非负数相等,那么他们各自的算术平方根也相等. ( )【例2】 判断题:(1) 若264x =,则8x =±. ( )(2)8±.( )(3) 6-是()26-的平方根 ( ) (4) 若两个数平方后相等,则这两个数也一定相等. ( )(5) 如果一个数的平方根存在,那么必有两个,且互为相反数. ( ) (6) 2a -没有平方根.( )例题精讲【例3】 判断题:(1) 64的立方根是4±. ( ) (2) 12-是16-的立方根.( ) (3)x .( ) (4) 互为相反数的两个数的立方根互为相反数.( )【例4】 下列说法正确的是()①正数都有平方根;②负数都有平方根, ③正数都有立方根;④负数都有立方根;A .1个B .2个C .3个D .4个【例5】 一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是().A .1a +B .21a +C .22a + D2.2化简及运算【例6】16的算术平方根是____________.【例7】求下列各式的值:(1234;(56【例8】求下列各式的值(1)2)(3)例题精讲【例9】 81的平方根是____________;2(的平方根是______.【例10】下列各式中x 的值.(1)29x =; (2)22500x -=(3)21(51)303x --=(4)2(100.2)0.64x -=【例11】已知某正数有两个平方根分别是3a +与215a -,求这个正数.【例12】求下列各式的值(12)(3)3(4(56【例13】(1)填表:(2)由上你发现了什么规律?用语言叙述这个规律. (3)根据你发现的规律填空:1.442; 7.696.2.3算术平方根的非负性【例14】x为何值时,下列各式有意义?(1;(234【例15】(2013年怀柔期末)如果0x=,则y x的值是________.【例16】设a a的值是________.例题精讲基础演练【练1】81的算术平方根是____________.【练2】求下列各式的值:(1234【练3】求下列各式的值(1)((2)-(3)(2-【练4】求下列等式中的x:(1)若2 1.21x=,则x=______;(2)2169x=,则x=______;(3)若294x=,则x=______;(4)若22(2)x=-,则x=______.【练5】(2012年北京四中期末)若2x-是8的立方根,则x的平方根是___________.【练6】(2013年北大附中)平方根等于本身的数是()A.0B.1C.-1D.0和1【练7】下列运算中正确的是()A B3=C1=-D.4=【练8】若x的立方根是4,则x的平方根是______.全能突破【练9】 27-______.【练10】 若59x +的立方根是4,则33x +的平方根是______.【练11】 如4=那么2(66)a -的值是______.【练12】 某数的立方根是它本身,这样的数有()A .1个B .2个C .3个D .4个【练13】(2011年北师大月考)下列说法不正确的是()A .125的平方根是15±; B 3- C .()20.1-的平方根是0.1±; D .81的平方根是9【练14】(2011年北师大月考)81的平方根是_________________;64-的立方根是_________.【练15】 (2012年北京四中期末)若实数,,x y z 满足21202x y z ⎛⎫-+-= ⎪⎝⎭,则x y z ++=_________.【练16】 (2012年交大附中)若实数x ,y 2|313|0x y --=,求2x y +的平方根.能力提升【练17_____。