数
0
0
负数
没有
立方根
一个正的 立方根
0 一个负的 立方根
练习:
一、判断正误 ⑴ 0.0009 0.03 。 ⑵ 9是的(-9)2算术平方根。 ⑶ 361 的平方根是±19。 ⑷有理数一定有立方根。 ⑸若某数的立方根是它本身,那么 这个数一定是±1或0。 ⑹一个数的立方根总比这个数的平 方根要小。
例九:已知:x2=64, x =-x, 求:
的值
x+1
十 :若x、y为实数,y< x-1 +
1-x +
1 2
化简: 1-y . y-1
十一
已知x=(
-2a 4+a
-
a - 3 + 3- a
)2013
3-a
求:x的个位数字
⑴ 121
⑵ 232
⑶ (-4)2
⑷0
⑸ -25
平方根的情况: ⑴一个正数的平方根有两个, 它们是互为相反数; ⑵ 0的平方根只有一个, 就是它本身0; ⑶负数没有平方根.
立方根的概念:
如果一个数的立方等于a,那么这个 数就叫做a的立方根。 即:若x3=a,则x叫做a的立方根
立方根的表示:3 a (为任意有理数)
一、什么叫平方根?什么叫算术平 方根?
如果一个数的平方等于a ,那么这 个数就叫做a的平方根。
即:若x2=a,则x叫做a的平方根。
正数a的正的平方根叫做a的算术平 方根;零的算术平方根是零。
二、平方根和算术平方根的表示方法: 平方根: ± a (a≥0)
算术平方根: a (a≥0)
想一想
下列各数的平方根会是怎样的?
正数有立方根吗?如果有,有几个? 负数呢? 零呢?