2018版高考数学复习第五章平面向量5.2平面向量基本定理及坐标表示教师用书文新人教版
- 格式:docx
- 大小:291.25 KB
- 文档页数:15
2018版高考数学大一轮复习 第五章 平面向量 5.4 平面向量的综合应用教师用书 文 新人教版1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“³”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( ³ )(3)若a ²b >0,则a 和b 的夹角为锐角;若a ²b <0,则a 和b 的夹角为钝角.( ³ ) (4)在△ABC 中,若AB →²BC →<0,则△ABC 为钝角三角形.( ³ )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), ∴|AB →|=22+ -2 2=22,|AC →|=16+64=45, |BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.2.已知在△ABC 中,|BC →|=10,AB →²AC →=-16,D 为边BC 的中点,则|AD →|等于( ) A .6 B .5 C .4 D .3答案 D解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ²AC ²cos A =BC 2,又AB →²AC →=|AB →|²|AC →|²cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →|=3,故选D.3.(2017²武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →²OA →=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0解析 由OP →²OA →=4,得(x ,y )²(1,2)=4, 即x +2y =4.4.(2016²银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a²b +b 2=8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.5.(2016²江西八校联考)在△ABC 中,AB →=(2,3),AC →=(1,2),则△ABC 的面积为________. 答案 1-32解析 ∵cos∠BAC =AB →²AC→|AB →||AC →|=2+615,∴sin∠BAC =2-315,∴S △ABC =12|AB →|²|AC →|²sin∠BAC =1-32.题型一 向量在平面几何中的应用例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →²BE →=1,则AB =________.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 (1)12(2)C解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →²BE →=(AD →+AB →)²(AD →-12AB →)=AD →2-12AD →²AB →+AD →²AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12³12|AB →|-12|AB →|2=1.∴⎝ ⎛⎭⎪⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.(1)在△ABC 中,已知向量AB →与AC →满足(AB →|AB →|+AC →|AC →|)²BC →=0,且AB →|AB →|²AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 答案 (1)A (2)5解析 (1)AB→|AB →|,AC→|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为(AB→|AB →|+AC →|AC →|)²BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC . 又AB→|AB →|²AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|²⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|²cos∠BAC =12,所以cos∠BAC =12,又0<∠BAC <π,故∠BAC=π3,所以△ABC 为等边三角形. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .则D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ),PA →=(2,-y ),PB →=(1,a -y ),则PA →+3PB →=(5,3a -4y ), 即|PA →+3PB →|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|PA →+3PB →|2的最小值为25.故|PA →+3PB →|的最小值为5. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →²CM →=0,则y x=________________________________________________________________________. 答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7),BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6³7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →²CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx ,由|2k |1+k2=3,得k =±3,即yx=± 3. 思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a²b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.(2016²合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)²PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴PA →+PB →=2PO →,∴(PA →+PB →)²PC →=2PO →²PC →, ∵PO →与PC →共线且方向相反,∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2³32³32=-92.题型三 向量的其他应用 命题点1 向量在不等式中的应用例3 已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →²OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →²OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2³1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8³3a ,解得a =18.命题点2 向量在解三角形中的应用例4 (2016²合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎪⎨⎪⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc=169a 2+259a 2-a 22³43a ³53a =45,∴sin A =35,故选C.(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →²ON →=0,则函数f (x )的最小正周期是______.(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →²OM →≤1,0≤OP →²ON →≤1,则z =OQ →²OP →的最大值为________. 答案 (1)3 (2)3解析 (1)由图象可知,M ⎝ ⎛⎭⎪⎫12,1,N ()x N ,-1, 所以OM →²ON →=⎝ ⎛⎭⎪⎫12,1²(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2³⎝ ⎛⎭⎪⎫2-12=3. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →²OM →=x +y ,OP →²ON →=y ,OQ →²OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.三审图形抓特点典例 (2016²太原一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点――――――――→作出点C 的对称点MD 、B 两点对称 CD 和MB 对称―――――――――――→CD →在x 轴上的投影是π12BM 在x 轴上的投影OF =π12 ――――――→A (-π6,0),AF =π4―→T =π―→ω=2 ―――――――→y =sin 2x +φ 和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝ ⎛⎭⎪⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.在△ABC 中,(BC →+BA →)²AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形答案 C解析 由(BC →+BA →)²AC →=|AC →|2, 得AC →²(BC →+BA →-AC →)=0, 即AC →²(BC →+BA →+CA →)=0, 2AC →²BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.(2016²山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94答案 B解析 ∵n ⊥(t m +n ),∴n ²(t m +n )=0,即t m ²n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 由已知得t ³34|n |2³13+|n |2=0,解得t =-4,故选B.3.(2016²南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a∥b ,则sin 2α等于( ) A .3 B .-3 C.45 D .-45答案 D解析 由a ∥b 得cos α+2sin α=0, ∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=45,sin 2α=2sin αcos α=-cos 2α=-45.4.(2016²武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cosB ,3cos A ),若m²n =1+cos(A +B ),则C 等于( )A.π6B.π3C.2π3D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →²PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案 D解析 ∵PA →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴PA →²PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤π6,5π6解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为14,故β的终点在如图所示的线段AB 上(α∥AB →,且圆心O 到AB 的距离为12),因此夹角θ的取值范围为⎣⎢⎡⎦⎥⎤π6,5π6.7.在菱形ABCD 中,若AC =4,则CA →²AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →²AB →=4³a ³cos(π-θ)=-4a cos θ=-8.8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π3.以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为______. 答案3解析 ∵|a +b |2-|a -b |2=4a²b =4|a ||b |cos π3=4>0,∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a²b =3, ∴|a -b |= 3.9.设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 答案 2 解析|x ||b |=|x ||x e 1+y e 2|=|x |x 2+y 2+3xy =1x 2+y 2+3xyx 2=1y x 2+3y x+1=1y x +32 2+14.因为(y x +32)2+14≥14, 所以|x ||b |的最大值为2.*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →²PF →的最小值是________.答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →²PF →最小值是HE →²HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23,sin∠CHE =CE CH =12,∴cos∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →²HF →=|HE →|²|HF →|²cos∠EHF =23³23³12=6.11.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. (1)证明 由题意得|a -b |2=2, 即(a -b )2=a 2-2a ²b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ²b =2,即a ²b =0,故a ⊥b .(2)解 因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos(π-β), 由0<β<π,得0<π-β<π, 又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.12.在△ABC 中,设内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos A ,sin A ),向量n =(2-sin A ,cos A ),若|m +n |=2. (1)求内角A 的大小;(2)若b =42,且c =2a ,求△ABC 的面积.解 (1)|m +n |2=(cos A +2-sin A )2+(sin A +cos A )2=4+22(cos A -sin A )=4+4cos(π4+A ).∵4+4cos(π4+A )=4,∴cos(π4+A )=0.∵A ∈(0,π),∴π4+A =π2,A =π4.(2)由余弦定理知:a 2=b 2+c 2-2bc cos A , 即a 2=(42)2+(2a )2-2³42³2a cos π4,解得a =42,∴c =8.∴S △ABC =12bc sin A =12³42³8³22=16.*13.设向量a =(cos ωx -sin ωx ,-1),b =(2sin ωx ,-1),其中ω>0,x ∈R ,已知函数f (x )=a²b 的最小正周期为4π. (1)求ω的值;(2)若sin x 0是关于t 的方程2t 2-t -1=0的根,且x 0∈⎝ ⎛⎭⎪⎫-π2,π2,求f (x 0)的值.解 (1)f (x )=a²b =(cos ωx -sin ωx ,-1)²(2sin ωx ,-1)=2sin ωx cos ωx -2sin 2ωx +1=sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π4.因为T =4π,所以2π2ω=4π,ω=14.(2)方程2t 2-t -1=0的两根为t 1=-12,t 2=1.因为x 0∈⎝ ⎛⎭⎪⎫-π2,π2,所以sin x 0∈(-1,1), 所以sin x 0=-12,即x 0=-π6.又由(1)知f (x 0)=2sin ⎝ ⎛⎭⎪⎫12x 0+π4,所以f ⎝ ⎛⎭⎪⎫-π6=2sin ⎝ ⎛⎭⎪⎫-π12+π4=2sin π6=22.。
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
第五章错误!平面向量第一节平面向量的概念及线性运算突破点(一)平面向量的有关概念基础联通抓主干知识的“源”与“流”名称定义备注向量既有大小又有方向的量叫做向量;向量的大小叫做向量的长度(或称模)平面向量是自由向量,平面向量可自由平移零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±错误!平行向量方向相同或相反的非零向量,又叫做共线向量0与任一向量平行或共线相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0考点贯通抓高考命题的“形"与“神”平面向量的有关概念典例](1)设a,b()A.a=-b B.a∥bC.a=2b D.a∥b且|a|=|b|(2)设a0为单位向量,下列命题中:①若a为平面内的某个向量,则a=|a|·a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.假命题的个数是()A.0B.1 C.2D.3解析](1)因为向量a|a|的方向与向量a相同,向量错误!的方向与向量b相同,且错误!=错误!,所以向量a与向量b方向相同,故可排除选项A,B,D。
当a=2b时,a|a|=错误!=错误!,故a=2b是错误!=错误!成立的充分条件.本节主要包括2个知识点:1.平面向量的有关概念;2.平面向量的线性运算.(2)向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.答案](1)C(2)D易错提醒](1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小;(2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征;(3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b。
第02节 平面向量基本定理及坐标表示【考纲解读】【知识清单】1.平面向量基本定理及其应用 平面向量基本定理如果12e e ,是一平面内的两个不共线向量,那么对于这个平面内任意向量a,有且只有一对实数12λλ,,使1122a e e λλ=+.其中,不共线的向量12e e ,叫做表示这一平面内所有向量的一组基底. 对点练习:向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则λμ-=________.【答案】32-2.平面向量的坐标运算 1. 平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底,对于平面内的一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a x y i j =+,这样,平面内的任一向量a 都可由x 、y 唯一确定,因此把(,)x y 叫做向量a 的坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标. (2)若1122()()A x y B x y ,,,,则2121()A x x y y B =-,-. 3.平面向量的坐标运算(1)若1122()()a x y b x y ==,,,,则1212()a b x x y y ±=±±,; (2)若()a x y =,,则()a x y λλλ=,. (3)设1122()()A x yB x y ,,,,则2121()A x x y y B =-,-,221221|()A x x y B y =-(-|)对点练习:【2017湖南郴州一测】ABCD Y 中,(1,2)AB =u u u r ,(1,4)AD =-u u u r,则AC =u u u r ( )A .(3,3)-B .(2,2)- C. (2,2)- D .(0,6) 【答案】D【解析】试题分析:AC =u u u r (0,6)AB AD +=u u u r u u u r,故选D.3.平面向量共线的坐标表示 向量共线的充要条件的坐标表示若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-. 对点练习:【2017广西名校摸底】已知函数322+=-x y 的图象是由函数x y 2=的图象按向量a 平移而得到的,又b a ∥,则=b ( )A .)3,2(--B .)2,3(-C .)3,2(-D .)2,3( 【答案】A【考点深度剖析】平面向量基本定理及坐标表示,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查共线、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.【重点难点突破】考点1 平面向量基本定理及其应用【2017·杭州测试】 如图,以向量OA →=a ,OB →=b 为邻边作▱OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.【答案】OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b.【解析】∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b.【领悟技法】1.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.2.特别注意基底的不唯一性:只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a都可被这个平面的一组基底12e e ,线性表示,且在基底确定后,这样的表示是唯一的. 【触类旁通】【变式一】如图,已知AP uuu r =43AB uuu r ,用OA uu u r ,OB uuu r 表示OP uuu r ,则OP uuu r等于( )A.13OA uu u r -43OB uuu rB.13OA uu u r +43OB uuu rC.-13OA uu u r +43OB uuu rD.-13OA uu ur -43OB uuu r 【答案】C【解析】OP uuu r =OA uu u r +AP uuu r =OA uu u r +43AB uuu r =OA uu u r +43 (OB uuu r -OA uu u r )=-13OA uu ur +43OB uuu r ,选C.考点2 平面向量的坐标运算【2-1】已知向量()()()1,3,1,2,2,4AB BC AD =-=--=u u u r u u u r u u u r,则CD =u u u r ( )A .()4,1-B .()0,9C .()2,1-D .()2,9 【答案】D【2-2】已知向量(,),(1,2)a x y b ==-r r ,且(1,3)a b +=r r ,则|2|a b -r r等于( )A .1B .3C .4D .5 【答案】D 【解析】因(1,3)a b +=r r ,(1,2)b =-r ,故(2,1)a =r ,所以2(4,3)a b -=-r r,故22|2|435a b -=+=r r ,故应选D. 【领悟技法】注意向量坐标与点的坐标的区别:要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息. 【触类旁通】【变式一】已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9 【答案】A【解析】因为2(4,8)a =r ,所以2(4,8)(1,1)a b -=--r r=()5,7,故选A.【变式二】【2017河北武邑三调】在矩形ABCD 中,()()1,3,,2AB AC k =-=-u u u r u u u r,则实数k =( )A .5-B .4- C. 23D .4 【答案】D【解析】(1,1)1304CB AB AC k AB CB k k =-=--⇒•=-+=⇒=u u u r u u u r u u u r u u u r u u u r,故选D.考点3 平面向量共线的坐标表示【3-1】向量()1,tan cos ,1,3a b αα⎛⎫== ⎪⎝⎭r r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( )A .13-B .13C .23-D .223-【答案】A【3-2】设向量a r =()21x ,-,b r =()14x ,+,则“3x =”是“a r //b r”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】当3x =时,()2,2a =r ,()4,4b =r ,此时//a b r r ;当//a b r r时,()()11248x x -+=⨯=,解得3x =±.所以“3x =”是“//a b r r”的充分而不必要条件.【领悟技法】1.向量共线的充要条件有两种: (1)a b ∥⇔(0)a b b λ≠=.(2)若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-. 当涉及到向量或点的坐标问题时,应用(2)解题较为方便. 2.两向量相等的充要条件,它们的对应坐标相等. 【触类旁通】【变式一】已知向量()()2,3,cos ,sin a b θθ==v v ,且//a b v v,则tan θ=( ) A .32 B .32- C .23 D .23- 【答案】A 【解析】由//a b v v ,可知2sin 3cos 0θθ-=,解得tan θ=32,故选A.【变式二】已知向量=(2,2),=(cosα,﹣sinα),则向量的模的最小值是( ) A .3 B .3 C .D .2 【答案】C 【解析】考点4 平面向量共线的应用【4-1】设(1,2)OA =-u u u r ,(,1)OB a =-u u u r ,(,0)OC b =-u u u r,0,0a b >>,O 为坐标原点,若A 、B 、C 三点共线,则12a b+的最小值是( )A .2B .4C .6D .8 【答案】D 【解析】(1,1)AB a =-u u u r ,(,1)BC b a =--u u u r,若A 、B 、C 三点共线,//AB BC u u u r u u u r ,由向量共线定理得()()111a b a -⨯=⨯--,21a b ∴+=,故()12124244248b a a b a b a b a b⎛⎫+=++=++≥+= ⎪⎝⎭. 【4-2】如图,在△ABC 中, 13AN NC =u u u r u u u r,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m的值为( )A .1B .31C .19D .3 【答案】C【课本回眸】向量共线的充要条件有两种: (1)a b ∥⇔(0)a b b λ≠=.(2)若1122()()a x y b x y ==,,,,则a b ∥⇔12210x y x y =-. 【领悟技法】当涉及到向量或点的坐标问题时,应用向量共线的充要条件(2)解题较为方便. 【触类旁通】【变式一】设两个向量()222,cos ,,sin 2μλλθμθ⎛⎫=+-=+ ⎪⎝⎭a b ,其中,,R λμθ∈.若2=a b ,则λμ的最小值为______. 【答案】6- 【解析】值为值为6-.【变式二】【2017山西大学附中二模】在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+u u u v u u u v u u u v ,其中,R λμ∈,则2λμ-的取值范围是___________.【答案】[]1,1-2sin cos 24πλμθθθ⎛⎫-=-=- ⎪⎝⎭,,444πππθ⎡⎤-∈-⎢⎥⎣⎦[]21,14πθ⎛⎫-∈- ⎪⎝⎭.【易错试题常警惕】易错典例:如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=,AP DE AC .易错分析:不能结合图形特征,灵活建立直角坐标系,将向量用坐标表示,将问题转化成三角问题求解.正确解析:以A 为原点,以AB 所在直线为x 轴,建立平面直角坐标系. 设正方形ABCD 的边长为1,则1E 0C 11D 01A 002(,),(,),(,),(,). 设P cos sin (1,1)AC θθ∴=u u u r (,), .又向量,AP DE AC μλ+=由题意得 00cos 10sin 12πθθθ≤≤∴≤≤≤≤,,,∴当cos 1θ=时,同时,sin 0θ=时,λμ+取最小值为21. 温馨提醒:涉及几何图形问题,要注意分析图形特征,利用已有的垂直关系,建立平面直角坐标系,将向量用坐标表示,利用向量共线的充要条件,应用函数方程思想解题.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。
表真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第五章平面向量5.2 平面向量基本定理及坐标表真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第五章平面向量5.2 平面向量基本定理及坐标表真题演练集训理新人教A版的全部内容。
标表真题演练集训理新人教A版1.[2016·新课标全国卷Ⅱ]已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=()A.-8 B.-6C.6 D.8答案:D解析:由向量的坐标运算,得a+b=(4,m-2),由(a+b)⊥b,得(a+b)·b=12-2(m-2)=0,解得m=8,故选D.2.[2015·四川卷]设向量a=(2,4)与向量b=(x,6)共线,则实数x=( )A.2 B.3C.4 D.6答案:B解析:∵a∥b,∴2×6-4x=0,解得x=3。
3.[2014·福建卷]在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案:B解析:解法一:若e1=(0,0),e2=(1,2),则e1∥e2,而a不能由e1,e2表示,排除A;若e=(-1,2),e2=(5,-2),因为错误!≠错误!,所以e1,e2不共线,根据共面向量的基本定1理,可以把向量a=(3,2)表示出来,故选B.解法二:因为a=(3,2),若e1=(0,0),e2=(1,2),不存在实数λ,μ,使得a=λe1+μe2,排除A;若e1=(-1,2),e2=(5,-2),设存在实数λ,μ,使得a=λe1+μe2,则(3,2)=(-λ+5μ,2λ-2μ),所以错误!解得错误!所以a=2e1+e2,故选B.4.[2015·新课标全国卷Ⅱ]设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________。
标表示教师用书文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第五章平面向量5.2 平面向量基本定理及坐标表示教师用书文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第五章平面向量5.2 平面向量基本定理及坐标表示教师用书文新人教版的全部内容。
坐标表示教师用书文新人教版1.平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x+x2,y1+y2),a-b=(x1-x2,y1-y2),1λa=(λx,λy1),|a|=错误!.1(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则错误!=(x2-x1,y2-y1),|错误!|=错误!.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0。
a、b共线⇔x1y2-x2y1=0.【知识拓展】1.若a与b不共线,λa+μb=0,则λ=μ=0。
2.设a=(x1,y1),b=(x2,y2),如果x2≠0,y2≠0,则a∥b⇔错误!=错误!。
【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.(×)(2)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.(√)(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √)(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成错误!=错误!。
§5.2 平面向量基本定理及坐标表示考纲展示►1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.考点1 平面向量基本定理及其应用1.平面向量基本定理如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,________一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组________. 答案:不共线 有且只有 基底 2.平面向量的正交分解把一个向量分解为两个________的向量,叫做把向量正交分解. 答案:互相垂直向量相等的常见两种形式:用基底表示的向量相等;用坐标表示的向量相等.(1)已知向量a ,b 不共线,若λ1a +b =-a +μ1b ,则λ1=__________,μ1=__________. 答案:-1 1解析:根据平面向量基本定理,用一组基底表示一个向量,基底的系数是唯一的,则有λ1=-1,μ1=1.(2)已知向量a =(1,2),b =(2,3),c =(3,4),若c =λa +μb ,则2λ+μ =__________. 答案:0解析:由c =λa +μb ,得(3,4)=λ(1,2)+μ(2,3)=(λ+2μ,2λ+3μ),∴⎩⎪⎨⎪⎧λ+2μ=3,2λ+3μ=4,解得⎩⎪⎨⎪⎧λ=-1,μ=2.故2λ+μ=0.向量易忽略的两个问题:向量的夹角;单位向量.(1)等边三角形ABC 中,若AB →=a ,BC →=b, 则a ,b 的夹角为__________.答案:120°解析:求两向量的夹角要求两向量的起点是同一点,因此a ,b 的夹角为120°.(2)已知A (1,3),B (4,-1),则与向量AB →共线的单位向量为__________. 答案:⎝ ⎛⎭⎪⎫35,-45或⎝ ⎛⎭⎪⎫-35,45解析:由已知得AB →=(3,-4),所以|AB →|=5,因此与AB →共线的单位向量为15AB →=⎝ ⎛⎭⎪⎫35,-45或-15AB →=⎝ ⎛⎭⎪⎫-35,45.[典题1] (1)如果e 1,e 2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1[答案] D[解析] 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0,无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧λ=1,-2=2λ,无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧λ=1,1=-λ,无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量.(2)[2017·山东济南调研]如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.[答案]311 [解析] 设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k ⎝ ⎛⎭⎪⎫14AC →-AB →=(1-k )AB →+k4AC →,且AP →=mAB →+211AC →,所以⎩⎪⎨⎪⎧1-k =m ,k 4=211,解得⎩⎪⎨⎪⎧k =811,m =311.[点石成金] 用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点2 平面向量的坐标运算平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =________,a -b =________,λa =________,|a |=________.(2)向量坐标的求法①若向量的起点是坐标原点,则终点的坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=________, |AB →|=________.答案:(1)(x 1+x 2,y 1+y 2) (x 1-x 2,y 1-y 2) (λx 1,λy 1) x 21+y 21(2)②(x 2-x 1,y 2-y 1)x 2-x 12+y 2-y 12(1)[教材习题改编]已知A (-1,-1),B (1,3),C (2,λ),若A ,B ,C 三点共线,则λ=________.答案:5(2)[教材习题改编]设P 是线段P 1P 2上的一点,若P 1(2,3),P 2(4,7)且P 是P 1P 2的一个四等分点,则P 的坐标为________.答案:⎝ ⎛⎭⎪⎫52,4或⎝ ⎛⎭⎪⎫72,6[典题2] (1)在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)[答案] B[解析] 由题意,得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5).(2)[2017·广东六校联考]已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( )A .1 B.13 C.12 D.23[答案] D[解析] 过C 作CE ⊥x 轴于点E . 由∠AOC =π4知,|OE |=|CE |=2,所以OC →=OE →+OB →=λOA →+OB →, 即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.[点石成金] 平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.考点3 平面向量共线的坐标表示平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔________. 答案:x 1y 2-x 2y 1=0(1)[教材习题改编]已知a =(3,4),b =(sin β,cos β),且a ∥b ,则tan β=__________.答案:34解析:由a ∥b ,得b =λa,∴sin β=3λ,cos β=4λ(λ≠0), ∴sin βcos β=34,即tan β=34. (2)[教材习题改编]已知e 1,e 2是平面向量的一组基底,且a =λ1e 1+λ2e 2.若a ∥e 2,则λ1=________;a 和e 1共线的条件是________.答案:0 λ2=0解析:若a ∥e 2,则设a =λe 2(λ≠0),于是λe 2=λ1e 1+λ2e 2,即(λ-λ2)e 2=λ1e 1.又e 1,e 2不共线,所以λ-λ2=0且λ1=0.同理a 和e 1共线有λ2=0.[考情聚焦] 平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属容易题.主要有以下几个命题角度: 角度一利用向量共线求参数或点的坐标[典题3] (1)已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m =________. [答案] -2[解析] m a +4b =(2m -4,3m +8),a -2b =(4,-1),由于m a +4b 与a -2b 共线, ∴-(2m -4)=4(3m +8),解得m =-2.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.[答案] (2,4)[解析] ∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC →=2AB →.设点D 的坐标为(x ,y ), 则DC →=(4-x,2-y ),AB →=(1,-1), ∴(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).[点石成金] 1.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若a =(x 1,y 1),b =(x 2,y 2),则a∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.2.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二利用向量共线解决三点共线问题[典题4] 已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.[答案] 1[解析] 若A ,B ,C 不能构成三角形,则向量AB →,AC →共线. ∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1),∴1×(k +1)-2k =0,解得k =1.[点石成金] 向量共线的充要条件用坐标可表示为x 1y 2-x 2y 1=0.[方法技巧] 1.两向量平行的充要条件若a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a∥b 的充要条件是a =λb ,这与x 1y 2-x 2y 1=0在本质上是没有差异的,只是形式上不同.2.三点共线的判断方法判断三点是否共线,先求由三点组成的任两个向量,然后再按两向量共线进行判定.3.若a 与b 不共线且λa +μb =0,则λ=μ=0.[易错防范] 1.若a ,b 为非零向量,当a∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.真题演练集训1.[2016·新课标全国卷Ⅱ]已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8答案:D解析:由向量的坐标运算,得a +b =(4,m -2),由(a +b ) ⊥b ,得(a +b )·b =12-2(m -2)=0,解得m =8,故选D.2.[2015·四川卷]设向量a =(2,4)与向量b =(x,6)共线,则实数x =( ) A .2 B .3 C .4 D .6答案:B解析:∵ a ∥b ,∴ 2×6-4x =0,解得x =3.3.[2014·福建卷]在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 答案:B解析:解法一:若e 1=(0,0),e 2=(1,2),则e 1∥e 2,而a 不能由e 1,e 2表示,排除A ;若e 1=(-1,2),e 2=(5,-2),因为-15≠2-2,所以e 1,e 2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.解法二:因为a =(3,2),若e 1=(0,0),e 2=(1,2),不存在实数λ,μ,使得a =λe 1+μe 2,排除A ;若e 1=(-1,2),e 2=(5,-2),设存在实数λ,μ,使得a =λe 1+μe 2,则(3,2)=(-λ+5μ,2λ-2μ),所以⎩⎪⎨⎪⎧3=-λ+5μ,2=2λ-2μ,解得⎩⎪⎨⎪⎧λ=2,μ=1,所以a =2e 1+e 2,故选B.4.[2015·新课标全国卷Ⅱ]设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案:12解析:∵ λa +b 与a +2b 平行,∴ λa +b =t (a +2b ),即λa +b =t a +2t b ,∴ ⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.5.[2015·北京卷]在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =________.答案:12 -16解析:∵ AM →=2MC →,∴ AM →=23AC →.∵ BN →=NC →,∴ AN →=12(AB →+AC →),∴ MN →=AN →-AM →=12(AB →+AC →)-23AC →=12AB →-16AC →. 又MN →=xAB →+yAC →, ∴ x =12,y =-16.课外拓展阅读 向量问题坐标化向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征.而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题的解决变得更加简捷.[典例1] 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.[解析] 设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得,λ=-2,μ=-12,所以λμ=4.[答案] 4[典例2] 给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB ︵上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.[思路分析][解] 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,小学+初中+高中小学+初中+高中则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32, 设∠AOC =α,α∈⎣⎢⎡⎦⎥⎤0,2π3, 则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎪⎨⎪⎧ cos α=x -12y ,sin α=32y , 所以x =cos α+33sin α,y =233sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎪⎫α+π6, 又α∈⎣⎢⎡⎦⎥⎤0,2π3, 所以当α=π3时,x +y 取得最大值2. 方法探究典例2首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了坐标法解决问题的优势.。
2018版高考数学大一轮复习 第五章 平面向量 5.2 平面向量基本定理及坐标表示教师用书 文 新人教版1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a 、b 共线⇔x 1y 2-x 2y 1=0.【知识拓展】1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × ) (5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么( )A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对 答案 A2.(教材改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ) A .(4,3) B .(-4,-3) C .(-3,-4) D .(-3,4)答案 C解析 a 1+a 2+…+a n -1=-a n =(-3,-4).3.(2015·课标全国Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →等于( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)答案 A解析 AB →=(3,1),AC →=(-4,-3),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=________. 答案 -12解析 由已知条件可得m a +n b =(2m,3m )+(-n,2n )=(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1).∵m a +n b 与a -2b 共线,∴2m -n 4=3m +2n -1,即n -2m =12m +8n ,∴m n =-12. 5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于( ) A.14a +12b B.12a +14b C.23a +13b D.13a +23b 答案 C解析 ∵AC →=a ,BD →=b , ∴AD →=AO →+OD → =12AC →+12BD →=12a +12b . ∵E 是OD 的中点,∴DE EB =13,∴DF =13AB .∴DF →=13AB →=13(OB →-OA →)=13×[-12BD →-(-12AC →)] =16AC →-16BD →=16a -16b , ∴AF →=AD →+DF →=12a +12b +16a -16b=23a +13b , 故选C.思维升华 平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m的值为________.答案311解析 设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43(2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b 等于( ) A .(4,0) B .(0,4) C .(4,-8) D .(-4,8)答案 (1)D (2)C解析 (1)由已知3c =-a +2b=(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝ ⎛⎭⎪⎫-133,-43.(2)因为向量a =(1,-2),b =(m,4),且a ∥b ,所以1×4+2m =0,即m =-2,所以2a -b =2×(1,-2)-(-2,4)=(4,-8).思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)(2016·北京东城区模拟)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.(2)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A .(2,72)B .(2,-12)C .(3,2)D .(1,3)答案 (1)4 (2)A解析 (1)以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3,解得λ=-2,μ=-12,∴λμ=4.(2)设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2y -2,∴⎩⎪⎨⎪⎧x =2,y =72,故选A.题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数例4 (2017·郑州月考)已知向量a =(1-sin θ,1),b =(12,1+sin θ),若a ∥b ,则锐角θ=________. 答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(1)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.(2)设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为________.答案 (1)(2,4) (2)3+222解析 (1)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).(2)由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λb +2,-2=-4λ,整理得2a +b =2,所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+ 222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的»AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导 建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[10分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[12分]1.(2016·安徽六校教育研究会二模)在平行四边形ABCD 中,AB →=a ,AC →=b ,DE →=2EC →,则BE →等于( ) A .b -13aB .b -23a33答案 C解析 因为BC →=AC →-AB →,DE →=2EC →, 所以BE →=BC →+CE →=BC →+13CD →=BC →-13AB → =AC →-AB →-13AB →=AC →-43AB →=b -43a , 故选C.2.已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)答案 A解析 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0.3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) A.14 B.12C .1D .2 答案 B解析 ∵a +λb =(1+λ,2),c =(3,4),且(a +λb )∥c ,∴1+λ3=24,∴λ=12,故选B. 4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32b B.12a -32b C .-32a -12b D .-32a +12b 答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1), ∴⎩⎪⎨⎪⎧ -1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧ λ=12,μ=-32,∴c =12a -32b . 5.(2017·淮南质检)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD交于点O ,则CO →的坐标为( )22C .(12,-5) D .(-12,-5) 答案 D 解析 ∵AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),∴OC →=12AC →=(12,5), ∴CO →=(-12,-5). 6.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 等于( )A.23B.43C .-3D .0 答案 D解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0,故选D. 7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ, ∴tan θ=12. 9.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案 43解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →, 又AC →=λAE →+μAF →=(12λ+μ)AB →+(λ+12μ)AD →, 于是得⎩⎪⎨⎪⎧ 12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧ λ=23,μ=23,所以λ+μ=43. 10.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).11.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧ a =5,b =-3.∴点C 的坐标为(5,-3).12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧ m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).13.如图所示,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示;(2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y是定值. (1)解 OG →=OP →+PG →=OP →+λPQ →=OP →+λ(OQ →-OP →)=(1-λ)OP →+λOQ →.(2)证明 一方面,由(1),得OG →=(1-λ)OP →+λOQ →=(1-λ)xOA →+λy OB →;①另一方面,∵G 是△OAB 的重心,∴OG →=23OM →=23×12(OA →+OB →)=13OA →+13OB →.② 由①②得⎩⎪⎨⎪⎧ 1-λx =13,λy =13.∴1x +1y =3(1-λ)+3λ=3(定值).。