1 = (2 λ )(4 λ ) , 3λ
2
0
得特征值 λ1 = 2, λ2 = λ3 = 4.
0 对 λ1 = 2,由( A 2 E ) x = 0, 得基础解系 ξ1 = 1 1 对 λ 2 = λ 3 = 4,由( A 4 E ) x = 0, 得基础解系
1 0 ξ 2 = 0 , ξ 3 = 1 . ξ 2与ξ 3 恰好正交 , 0 1
α Tα1 α Tα1 α Tα1 1 2 n T α 2 α Tα 2 α Tα 2 2 n α1 =E T α α α Tα α Tα 1 n 2 n n n
1, 当 i = j; α α i = δ ij = 0, 当i ≠ j
T j
( i , j = 1, 2, , n )
§6.3
实对称矩阵的相似 对角化
一,实对称矩阵特征值与特征向量的性质
定理1 定理1 的特征值为实数. 实对称矩阵 ( AT = A) 的特征值为实数.
证明 设复数 λ为对称矩阵 A的特征值 , 复向量 x为
对应的特征向量 , Ax = λx , x ≠ 0. 即
用 λ 表示λ的共轭复数, x表示x的共轭复向量, 表示 则 A x = A x = ( Ax ) = (λx ) = λ x .
定理 2 设λ1 , λ 2 是对称矩阵 A的两个特征值 , p1 , p2是对应的特征向量 , 若λ1 ≠ λ 2 , 则p1与p2正交 .
证明 λ1 p1 = Ap1 , λ2 p2 = Ap2 , λ1 ≠ λ2 ,
∵ A对称, A = AT ,
∴ λ1 p1 = (λ1 p1 ) = ( Ap1 ) = p1 T AT = p1 T A,
范正交化.
定理5 定理5 设 α1 , α 2 , L , α s 是一组线性无关的向 量,则可以找到一组正交的向量 β 1 , β 2 , L , β s 等价. 使得向量组 α1 , α 2 , L , α s 与 β 1 , β 2 , L , β s 等价. 证明 首先, 首先,令 β 1 = α1 再令 β2 = α2 + kβ1 及 β 1 , β 2 = 0 即 β 1 , α 2 + k β 1 , β 1 = 0 从而求出