【图文】混凝土结构受弯构件正截面承载力计算(极限状态法)_百(精)
- 格式:doc
- 大小:3.64 MB
- 文档页数:25
第4章受弯构件的正截面承载力计算1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点?答:第Ⅰ阶段:混凝土开裂前的未裂阶段当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。
由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。
随着荷载的增加,截面上的应力和应变逐渐增大。
受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。
当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。
此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。
第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。
在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。
随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。
在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。
还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。
但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。
这与平截面假定发生了矛盾。
但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。
因此,各受力阶段的截面应变均假定呈三角形分布。
受弯构件正截面承载力计算受弯构件的正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。
在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。
下面将详细介绍受弯构件正截面承载力计算的过程。
在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。
弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。
弯矩的大小可以通过施加在构件上的外部荷载和构件的几何形状来计算。
有了弯矩的大小后,下一步就是确定截面形状。
截面形状是影响受弯构件强度的一个重要因素,常见的截面形状有矩形、圆形、T形等。
不同的截面形状对受弯构件的承载力有着不同的影响,因此需要根据实际情况选择合适的截面形状。
确定了弯矩和截面形状后,接下来就是计算材料的强度。
材料的强度是指材料在承受外部荷载作用下所能承受的最大应力。
常见的材料强度有抗拉强度、抗压强度和屈服强度等。
在进行正截面承载力计算时,需要根据材料的强度来确定构件的极限状态。
最后,根据弯矩、截面形状和材料的强度,可以计算出受弯构件的正截面承载力。
计算的过程包括确定应力分布、求解最大应力和计算承载力。
根据不同的截面形状和材料的特性,计算方法也有所不同。
总的来说,受弯构件正截面承载力计算是一项综合性的工作,需要考虑多个因素的综合作用。
在实际工程设计中,需要准确计算受弯构件的承载力,以确保结构的安全性和可靠性。
因此,在进行计算时,需要充分考虑强度设计的要求和计算方法,以保证计算结果的准确性。
受弯构件正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。
在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。
下面将详细介绍受弯构件正截面承载力计算的过程。
在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。
弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。
受弯构件正截面受弯承载力计算
在进行受弯构件正截面受弯承载力计算时,首先需要了解构件的几何尺寸和材料特性。
几何尺寸包括构件的宽度、高度和长度,材料特性包括材料的抗弯强度和弹性模量等。
在进行受弯构件正截面受弯承载力计算时,一般采用等效应力法。
根据等效应力法,构件的正截面受弯承载力可以通过以下公式计算:M=σ×S
其中,M是受弯构件所受弯矩,σ是构件截面上的应力,S是截面的抵抗矩。
在计算截面上的应力时,可以使用以下公式:
σ=M×y/I
其中,M是受弯构件所受弯矩,y是距离截面中性轴距离,I是截面的惯性矩。
在计算截面的抵抗矩时,可以使用以下公式:
S=y×A×f
其中,y是距离截面中性轴距离,A是截面的面积,f是材料的抗弯强度。
综合以上公式,可以得到受弯构件的正截面受弯承载力公式:
N=σ×S=(M×y/I)×(y×A×f)
根据构件的几何尺寸和材料特性,可以计算出受弯构件的正截面受弯
承载力。
需要注意的是,在实际工程中,受弯构件的应力和截面的抵抗矩常常
不是均匀分布的,需要进行更加详细的计算和分析。
此外,由于材料的塑
性变形和结构的不完美性等因素的存在,实际承载能力可能小于理论计算值。
综上所述,受弯构件正截面受弯承载力计算是结构工程中的重要任务,它通过等效应力法来确定构件在受弯状态下的承载能力。
在实际工程中,
应该考虑到材料和结构的各种因素,进行更加精细的分析和计算。