钨灯丝、冷场、热场扫描电镜的区别及应用
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
扫描电子显微镜(钨灯丝)配置及技术指标一、主要用途1、材料显微结构的二次电子像观察2、材料显微结构的背散射电子像观察3、材料微区元素的定性和半定量分析二、扫描电镜组成1、主机+电制冷X 射线能谱仪2、计算机控制系统3、真空系统4、低真空系统5、电子光学系统6、辅助设备(变压器、稳压器、冷却装置等)7、备品备件(包括灯丝、聚光镜光栏、物镜光栏、保险丝、密封圈、专用工具、碳、银两种导电胶、导电胶带、真空脂、二次电子探测器等)8、离子溅射仪三、技术指标1、二次电子(高真空)分辨率: 3.0nm (30KV)2、背散射电子(高真空)分辨率: 4.0nm (30KV)3、放大倍数:最低倍率w 6倍,最高倍率》300,000倍4、真空系统4.1 具有高低真空功能;4.2 真空泵系统:涡轮分子泵+机械泵4.4 真空系统阀门:电磁阀或气动阀(配有空压机)5 电子光学系统5.1 电子枪:全自动电子枪,具有自动偏压功能5.2 聚光镜光阑完全安装在长内衬管内,用户可自行拆卸、更换聚光镜光阑5.3 灯丝:预对中灯丝,灯丝饱和自动调节6 样品室和样品台6.1 最大样品尺寸:200mmx75mm6.2 5 轴自动马达驱动样品台6.3 非接触报警装置:通过输入的样品尺寸数据,自动避免样品台的危险操作6.4 具有样品室内部整体观察功能(CCD)7 探测器及成像系统7.1 二次电子探测器:二次电子像7.2 背散射电子探测器:成分像、形貌像或三维像7.3 成像模式:同时得到二次电子像,背散射电子像,两种图像混合像7.4 图像捕捉模式:快慢扫描捕捉、积分捕捉7.5 电镜操作控制系统:鼠标、键盘及具有手动操作功能部件7.6 软件界面:中英文操作界面(无中文操作界面说明即可),列出标配软件和外购软件8 X 射线能谱仪的技术指标(扫描电镜附件)8.1 电制冷探测器8.2 分别率:优于129eV8.3 探测器活区面积:大于或等于208.4 元素探测范围:Be(4)—U(92)8.5 软件界面:中英文界面(无中文操作界面说明即可)8. 6软件功能:具备点、线、面分析功能,具有标准通用软件包,列出标配软件和外购软件8.7 配有专用电脑和显示器四、附件、备件、特殊工具和消耗品提供五年以上的备品备件(包括各种保险丝、密封圈、各种光栏、专用工具、样品托、金属抛光膏、银导电胶、导电胶带及预对中灯丝80 支)1 预对中灯丝:80 支2 聚光镜光阑: 5 套3 物镜光阑:5 套4 银导电胶: 2 瓶5 导电胶带:2 卷五、安装服务5.1 安装、调试:厂家免费负责仪器的安装、调试,验收合格。
钨灯丝、冷场、热场扫描电镜的区别扫描式电子显微镜,其系统设计由上而下,由电子枪(Electron Gun) 发射电子束,经过一组磁透镜聚焦(Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子(Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。
电子枪的必要特性是亮度要高、电子能量散布(Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射(Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。
对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。
价钱最便宜使用最普遍的是钨灯丝,以热游离(Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为 4.5eV,钨灯丝系一直径约100µm,弯曲成 V 形的细线,操作温度约2700K,电流密度为 1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为 40~80 小时。
六硼化镧(LaB6)灯丝的功函数为 2.4eV,较钨丝为低,因此同样的电流密度,使用 LaB6 只要在 1500K 即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。
场发射分热场和冷场,共性是分辨率高。
热场的束流大些,适合进行分析,但维护成本相对较高,维护要求高。
冷场做表面形貌观测是适合的,相对而言维护成本低些,维护要求不算高。
冷场发射电子枪优点:单色性好,分辨率高缺点:电子枪束流不稳定,束流小,不适合做能谱分析,每天要做一次Flash热场发射电子枪优点:电子束稳定,束流大缺点:与冷场相比除了单色性和分辨率略差点外,其它找不出缺点。
热场在总发射电流(Total emission current)、最大探针电流(Maximum probe current)、电子束噪声(Beam noise)、发射电流漂移(Emission current drift)、工作真空(Operating vacuum)、阴极还原(Cathode regeneration)、对外部影响的敏感性(Sensitivity to external influence)等方面都具有一等的优势。
这些参数直接影响电镜的性能。
在阴极半径(Cathode radius)、有效电子源半径(Effective source radius)、发射电流密度(Emission current density)、标准亮度(Normalised brightness)等方面,冷场发射略胜一筹。
这几个参数总起来说就是冷场发射阴极的发射面积较小、能量集中,便于将电子束聚焦于一个很小的点,以提高分辨率。
但是在现代的电镜技术条件下,热场发射电镜通过采取各种有效措施,也能够将电子束汇聚于一个理想的点,达到冷场发射电镜的分辨率水平。
电子枪发射的电流强度很小,微安级别和纳安级别,为防止气体电离造成的大电流击穿高压电源,都需要高真空环境。
电子枪阴极都属于耗材系列。
差异和优劣:1、点源直径不同及优劣:钨灯丝电子枪阴极使用0.1mm直径的钨丝制成V形(发叉式钨丝阴极),使用V形的尖端作为点发射源,曲率半径大约为0.1mm;场发射电子枪阴极使用0.1mm直径的钨丝,经过腐蚀制成针状的尖阴极,一般曲率半径在100nm~1μm之间。
冷热场扫描电镜技术对比1.电子发射源热场在总发射电流(Total emission current)、最大探针电流(Maximum probe current)、电子束噪声(Beam noise)、发射电流漂移(Emission current drift)、工作真空(Operating vacuum)、阴极还原(Cathode regeneration)、对外部影响的敏感性(Sensitivity to external influence)等方面都具有绝对的优势。
这些参数直接影响电镜的性能,这也是冷场发射所望尘莫及。
2.电镜性能2.1 稳定性冷场发射电镜灯丝要吸附电子枪内的残留气体,随着时间的增长,发射电流越来越不稳定,需要定时(大约8小时一次)进行加热还原(flash,约需半小时),给使用维护带来不便。
而热场发射电镜无此烦恼。
热场发射电镜的发射电流稳定度较好,漂移小于0.5%/h(ZEISS电镜可达到0.2%/h),而冷场发射则比这要大一个数量级。
2.2最大探针电流热场发射电镜探针电流一般可达20nA,而冷场电镜却要低约1个数量级。
热场发射电子枪面积较冷场发射电子枪面积大20倍,发射电流高50倍,这种较大的虚拟源尺寸给热场带来优点:真正的敏感性大幅度降低。
而冷场受震动敏感性影响不利于高倍观察。
探针电流较大,,适合全面分析,可容易进行 BSE、EDS、WDS、EBSD、CL 等分析。
而一般冷场发射探针电流达不到这个数量级,只能进行粗略的能谱分析,有些分析工作(如波普、电子衍射、印迹荧光等)在冷场电镜上难以进行。
探针电流较大,可达20nA,适合全面分析,可容易进行 BSE、EDS、WDS、EBSD、CL 等分析。
而一般冷场发射探针电流达不到这个数量级,只能进行粗略的能谱分析,有些分析工作(如波普、电子衍射、印迹荧光等)在冷场电镜上难以进行。
2.3 工作真空度热场发射电镜电子枪所需的工作真空度较低(≤1x10-8hPa),比较容易达到,一般只用一级离子泵就可以了。
钨灯丝扫描电镜原理钨灯丝扫描电镜是一种利用电子束成像技术观察物样表面形貌及微结构的高级显微分析仪器。
其主要原理是利用电子枪发射电子束,扫描物样表面,将经过二次电子转化的电子信号转化为图像信号。
下面从发射电子束、扫描物样表面和信号转换三部分详细介绍钨灯丝扫描电镜的原理。
一、发射电子束电子束是钨灯丝扫描电镜成像的基础,也是其最重要的组成部分之一。
电子束来源于电子枪,电子枪是由加热器、阴极、阳极和网格组成的。
阴极加热后,会发射出一些自由电子,在高电场作用下,这些自由电子会加速并向阳极移动。
在电子枪中,使用网格控制电子束的尺寸和位置,通过调节网格电压和阴极电压可以控制电子束的强度和位置。
二、扫描物样表面扫描物样表面是钨灯丝扫描电镜的核心部分,通过扫描物样表面可以获取到物样表面形貌和微观结构信息。
当电子束照射到物样表面时,表面会产生一些二次电子,这些二次电子会溅射出去,其中一部分可以被收集到二次电子探测器中。
通过探测器收集到的二次电子信号,可以重建出物样表面的形貌和微观结构。
三、信号转换信号转换是将通过二次电子转化的电子信号转化成最终的图像信号。
收集到的二次电子信号会被放大并转化成电压信号,这些信号经过电子学处理后被送入视频控制器,由视频控制器进行数字/模拟转换并存储成图像。
最终,经过数字转换的图像信号被发送到高分辨率显示器或数字储存器中,形成可视化图像或数字数据。
钨灯丝扫描电镜是一种高级显微分析仪器,其基本原理是利用电子束成像技术观察物样表面形貌及微结构。
从电子束发射、扫描物样表面到信号转换,这三个部分构成了钨灯丝扫描电镜的主要原理。
除了基本原理之外,钨灯丝扫描电镜还有一些相关的内容,包括样品准备、成像技术和应用范围等。
一、样品准备样品准备是钨灯丝扫描电镜分析中的重要环节,样品的质量和处理方法对成像效果有非常大的影响。
通常情况下,将样品制成薄片或表面光洁的粒子,用金、银等容易导电的材料涂覆表面,然后通过真空室将样品固定在样品台上。
扫描电子显微镜及其在材料研究中的应用摘要:本文介绍了扫描电子显微镜的发展、结构特点及工作原理,阐述了扫描电子显微镜在材料研究中的应用。
关键词:扫描电子显微镜;材料研究;应用一、扫描电镜简介1.1扫描电子显微镜分类扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术真空技术、精细机械结构以及现代计算机控制技术。
扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。
1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。
经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到 1956年开始生产商品扫描电镜。
近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展相对于光学显微镜。
扫描电子显微镜有如下七种分类方法:(1)按照电子枪种类分:钨丝枪、六硼化镧、场发射电子枪;(2)按照样品室的真空度分:高真空模式、低真空模式、环境模式;(3)按照真空泵分:油扩散泵、分子泵;(4)按照自动化程度分:自动、手动;(5)按照操作方式分:旋钮操作、鼠标操作;(6)按照电器控制系统分:模拟控制、数字控制;按照图像显示系统分:模拟显像、数字显像[1]。
1.2扫描电子显微镜的特点SEM在分辨率、景深及微分析等方面具有巨大优越性,因而发展迅速,应用广泛。
随着科学技术的发展,使SEM的性能不断提高,使用的范围也逐渐扩大。
扫描电镜测试技术的特点主要有:(1)聚焦景深大。
扫描电子显微镜的聚焦景深是实体显微镜聚焦景深的50倍,比偏反光显微镜则大500倍,且不受样品大小与厚度的影响,观察样品时立体感强。
(2)二次电子扫描图像的分辨率优于100埃,比实体显微镜高200倍。
可以直接观察矿物、岩石等的表面显微结构特征,清晰度好。
(3)放大倍数在14—100000倍内连续可调。
扫描电镜应用扫描电镜应用简介魏绪明 2019年10月21日扫描电镜的工作原理扫描电镜的工作原理可以简单地归纳为“光栅扫描,逐点成像”。
扫描电镜图像的放大倍数定义为 M=L/lL显象管的荧光屏尺寸;l电子束在试样上扫描距离。
电子与块状样品的作用入射电子二次电子特征X射线连续X射线俄歇电子背散射电子光子电子束诱导电流块状样品声子扫描电镜的主要性能与特点放大倍率高(M=Ac/As)分辨率高(d0=dmin/M总)景深大(F≈ d0/β)保真度好样品制备简单影响分辨率因素1仪器电子源类型:钨丝,LaB6,肖特基热场,冷场结构设计:外透镜,半内透镜,全内透镜光阑电子探测器:二次电子,背散射电子电子枪各种电子枪比较六硼化镧 100微米 5微米 106 10-6 1.5 钨丝热场发射小于100 埃 108 10-8 1.0 冷场发射小于100 埃 108 10-9 0.25近似源尺寸105 亮度 (A/cm2sr) 真空 (Torr) 能量展宽(eV) 10-5 2.5几种扫描电镜的分辨率钨丝/背散射电子 15KV时4nm以上钨丝/二次电子 15KV时3nm以上热场发射外透镜/二次电子 15KV时1.5-2nm 冷场发射半内透镜/二次电子 15KV时1.0nm 冷场发射内透镜/二次电子 30KV时0.4nm影响分辨率因素2操作对中聚焦像散工作距离工作电压电子透镜生成一个尽可能小而亮的束斑影响因素: 球差色差像散理想透镜高斯像平面P P 完美透镜带球差透镜高斯像平面P P色差效应高斯像平面P P像散过焦正焦欠焦像散影响1 32 41正焦无像散 2正焦有像散 3欠焦有像散 4过焦有像散电子束与物质相互作用及产生的信息入5~50nm射电子束1nm500~5000nm100~1000nm俄歇电子二次电子背散射电子特征X射线连续X射线背散射电子空间分辨率 X射线的分辨率扫描电镜图象及衬度二次电子像背散射电子像二次电子象二次电子象是表面形貌衬度,它是利用对样品表面形貌变化敏感的物理信号作为调节信号得到的一种象衬度。
SEM扫描电镜中钨灯丝与场发射的同与异,及各自的优点和缺点。
相同:都是电子枪即发射电子的装置,都有阴极和阳极, 阴极都是点源发射,阴极和阳极之间有直流高压电场存在,高压一般可调,用于控制电子的发射速度(能量),电子枪发射的电流强度很小,微安级别和纳安级别,为防止气体电离造成的大电流击穿高压电源,都需要高真空环境。
电子枪阴极都属于耗材系列。
差异和优劣:1、点源直径不同及优劣:钨灯丝电子枪阴极使用0.1mm直径的钨丝制成V形(发叉式钨丝阴极),使用V形的尖端作为点发射源,曲率半径大约为0.1mm;场发射电子枪阴极使用0.1mm直径的钨丝,经过腐蚀制成针状的尖阴极,一般曲率半径在100nm~1μm之间。
由于制作工艺上的差异,造价不同,发叉式钨丝阴极便宜,场发射阴极很贵。
2、发射机制不同和优劣钨灯丝属于热发射,在灯丝电极加直流电压,钨丝发热,使用温度一般在2600K~2800K之间,钨丝有很高的电子发射效率,温度越高电流密度越大,理想情况下的的电子枪亮度越高。
由于材料的蒸发速度随温度升高而急剧上升,因此钨灯丝的寿命比较短,一般在50~200小时之间,这个和设定的灯丝温度有关。
由于电子发射温度高,发射的电子能量分散度大,一般2ev,电子枪引起的色差会比较大。
场发射电子枪主要的发射机制不是靠加热阴极,而是在尖阴极表面增加强电场,从而降低阴极材料的表面势垒,并且可以使得表面势垒宽度变窄到纳米尺度,从而出现量子隧道效应,在常温甚至在低温下,大量低能电子通过隧道发射到真空中,由于阴极材料温度低,一般材料不会损失,因此寿命很长,可使用上万小时。
3、电子枪控制方式和电子源直径不同和优劣性。
钨灯丝是三极自给偏压控制,具有偏压负反馈电路,因此发射电流稳定度高;由于阴极发射点源面积大,因此电子源尺寸也比较大,50~100μm,发射可达几十~150μA,但电子枪的亮度低,因此当电子束斑聚焦到几个纳米的时候,总的探针电流很小, 信噪比太低是限制图像分辨率的根本因素,当前最佳钨灯丝扫描电镜最佳分辨率3.0nm.场发射电子枪没有偏压负反馈电路,外界电源的稳定度是决定因素,发射电流稳定度相比要低一些;由于尖阴极发射电源面积很小100nm左右,没有明显的电子源,因此使用虚电子源作为电子光学系统设计的初始物而存在,电子虚源直径一般在2~20nm,电子枪亮度相比钨灯丝提高上千倍。
扫描电子显微镜之冷场发射、热场发射、肖特基作者:驰奔COXEM(酷塞目)有限公司Beijing Office(转载请注明出处)目前市场上可以提供的商品化大分类,一般而言是以发射方式区分为:场发射和热发射。
场发射电子枪的高性能结合,使得场发射扫描电镜相对普通热发射扫描电镜的性能有了质的飞跃。
热发射概念比较简单,是以钨灯丝扫描电镜为主,最常见,也有采用六硼化镧电子枪的扫描电镜。
场发射概念相对比较混乱,市场经常出现的名称为:冷场发射扫描电镜:就两家日本电子和日本日立,是日本的特色,也是日本人的性格体现,尖(不要理解成奸)的要命!因为不太好用,所以较量重点在于看谁能够为用户主动排忧解难。
超高分辨热场发射扫描电镜:为了和冷场较真,又兼顾热场优越性.很多人认为这是真正可以叫做热场发射的扫描电镜; 但也有业内著名人士云,现在根本没有真正的热场, 理由是肖特基发射电子源,配合双模式物镜(一种模式为半内透镜,一种为无场模式),当采用无场模式时,分辨率马上落到底。
热场发射扫描电镜:前面没有形容词,就是某业内人士所云的并非真正热场发射扫描电镜,但名称可以借一下超高分辨的概念。
肖特基Schottky热发射扫描电镜:一般制造商都不肯这么叫,其实这反映其实质肖特基热场发射扫描电镜:实质同上,但借助热场概念。
混乱的原因,是统治话语权的人有意或者无意的一种引导,本文不存在商业引导,驰奔认为几十年前真正的科学家就已经搞清楚了,而且早已厘清了事实。
在很多资料中都可以查到下面的这个图。
这才是最正确的回答。
但是大多数需要扫描电镜的人并非都熟悉量子物理,稍有必要做一些解释。
发射体前电子的势能曲线V(z),外加电场-e I E I z,电子的势能曲线。
实际增加外电场的主要途径是减小阴极的曲率半径,为100微米,六硼化镧阴极约为5微米,肖特基热发射阴极(单晶六硼化镧或者ZrO/W)为小于1微米,冷场发射阴极小于100nm,热场发射阴极在100nm到1μm之间。
钨灯丝、冷场、热场扫描电镜的区别扫描式电子显微镜,其系统设计由上而下,由电子枪(Electron Gun) 发射电子束,经过一组磁透镜聚焦(Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子(Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。
电子枪的必要特性是亮度要高、电子能量散布(Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射(Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。
对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。
价钱最便宜使用最普遍的是钨灯丝,以热游离(Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为 4.5eV,钨灯丝系一直径约100µm,弯曲成 V 形的细线,操作温度约2700K,电流密度为 1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为 40~80 小时。
六硼化镧(LaB6)灯丝的功函数为 2.4eV,较钨丝为低,因此同样的电流密度,使用 LaB6 只要在 1500K 即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。
两种扫描电镜阴极钨灯丝的使用对比王银军范建冬(上海梅山钢铁公司技术中心江苏南京210039)摘要扫描电镜电子枪上的两种阴极钨灯丝的使用寿命相差约5倍。
本文主要从阴极钨灯丝的形状、单位表面功率、表面形貌等方面分析其早期失效的主要原因是设计不合理,为正确选用阴极钨灯丝、降低实验成本提供依据。
关键词扫描电镜钨灯丝使用寿命某扫描电镜电子枪为三电极热发射式电子枪,主要由阴极、栅极和阳极组成(图1)[1]。
电子枪阴极一般采用发叉式钨灯丝。
使用某仪器厂商提供的A、B两种阴极钨灯丝,持续多年的对比使用情况表明,在大致相同的使用条件下,A钨灯丝使用寿命一般可达100小时以上,而B钨灯丝使用寿命一般仅约20小时左右。
由于这两种阴极钨灯丝的使用寿命相差约5倍,但售价相同,长期使用B 钨灯丝将显著增加用户的实验成本。
另外,使用B钨灯丝时,更换、调试频繁,操作麻烦,严重影响实验工作进度。
从阴极钨灯丝的形状、单位表面功率、表面形貌等方面分析,探讨了导致这两种钨灯丝的使用寿命差别悬殊的主要原因,为合理选用阴极钨灯丝、降低实验成本提供了依据。
图1、扫描电镜电子枪结构简图1、两种阴极钨灯丝的对比阴极钨灯丝一般由钨灯丝、绝缘子、电极组成(图2),钨灯丝两端通过焊接方法与2根杆状电极连接,这2根平行的电极再垂直穿过高铝或石英材质的圆盘状绝缘子。
1-钨灯丝;2-绝缘子;3-绝缘子定位槽;4-杆状电极图2、阴极钨灯丝观察A 、B 两种钨灯丝的外形结构(图3),并测量其直径、有效长度(两电极杆末级焊点之间的灯丝总长)。
A 钨灯丝外形呈较尖锐、狭长的发叉形,夹角约15º;B 钨灯丝外形呈较钝的“V ”形,夹角约45º。
A 、B 两种钨灯丝直径都为Φ125µm 。
A 钨灯丝有效长度约12mm ;B 钨灯丝有效长度仅约8mm 。
a 、b 、图3、两种钨灯丝外形对比(a 、A 灯丝;b 、B 灯丝) 2、分析讨论2.1、灯丝外形对灯丝寿命的影响电子枪工作原理是:阴极钨灯丝加热到一定的工作温度,热电子运动加快,阴极灯丝的逸出功降低,由于灯丝尖端表面电场强,出射的电子便离开尖端,在阴极和阳极间的加速电压作用下,向阳极加速运动。
扫描电子显微镜和X射线能谱仪普通扫描电镜测试对样品的基本要求是?1.能提供导电和导热通道,不会被电子束分解2.在电子束扫描下具有良好的热稳定性,不能挥发或含有水分3.样品大小与厚度要适于样品台的尺寸4.样品表面应该清洁,无污染物5.磁性样品要预先去磁,以免观察时电子束受到磁场的影响。
按电子枪源分,扫描电镜分为哪几类,各有什么优缺点?1.钨灯丝枪扫描电镜其优点是钨灯丝造价和维护成本相对较低,缺点是分辨率较差2.六硼化镧枪寿命介于中间,但比钨枪容易产生过度饱和和热激发问题3.场发射电子枪价格最贵,需要高真空,但其寿命最长,不需要电磁透镜系统。
X射线能谱仪由哪些部分组成?固体探测器,场效应管,前置放大器,脉冲处理器,模数转换器,多道分析器扫描电镜由哪几部分组成?每部分的功能是什么?1.电子光学系统:获得扫描电子束,作为使样品产生各种物理信号的激发源2.信号收集及显示系统:收集(探测)样品在入射电子束作用下产生的各种物理信号,并进行放大,将信号检测放大系统输出的调制信号转换为能显示在阴极射线管荧光屏上的图像,供观察或记录。
3.真空系统:确保电子光学系统正常工作,防止样品污染,保证灯丝的工作寿命4.电源系统:为扫描电子显微镜各部分提供所需的电源,稳压稳流。
对比光学显微镜和透射电镜,扫描电镜有什么优势和劣势?优势:1.分辨率高2.试样制备简单3.放大倍数高且连续可调4.景深大,成像富有立体感5.多功能化,是一种综合分析工具劣势:分辨率及放大倍数较透镜差一些,造价及维护费用较光学显微镜高扫描电镜的二次电子像和背散射电子像各反应样品的什么信息,哪个空间分辨率更高?1.二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌2.背散射电子可显示形貌衬度,成分衬度和晶体取向衬度3.其中二次电子的分辨率较高,扫描电镜的分辨率就是二次电子的分辨率。
从结构上看,光学显微镜,透射电镜,扫描电镜有什么异同?三者都有相应的放大系统和样品台及试样架,不同之处在于TEM和SEM是通过电路放大,并且需要在真空环境中,光学显微镜是通过光路放大,扫描电镜具有信号收集和显示系统,有扫描线圈做规律的扫描影响扫描电镜分辨率的因素?1.电子束的束斑直径,电子束的束斑直径减小,分辨率提高,但实际直径小到一定程度时,很难激发出足够的信号,所以理想的电子束需要尺寸小且束流大。
钨灯丝、冷场、热场扫描电镜的区别扫描式电子显微镜,其系统设计由上而下,由电子枪(Electron Gun) 发射电子束,经过一组磁透镜聚焦(Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size) 后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子(Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。
电子枪的必要特性是亮度要高、电子能量散布(Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射(Field Emission) ,不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function) 能障而逃离。
对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。
价钱最便宜使用最普遍的是钨灯丝,以热游离(Thermio nizati on) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV ,钨灯丝系一直径约100卩m弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80 小时。
六硼化镧(LaB6) 灯丝的功函数为 2.4eV ,较钨丝为低,因此同样的电流密度,使用LaB6 只要在1500K 即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。
钨灯丝、冷场、热场扫描电镜的区别扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。
电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。
对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。
价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100µm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。
六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。
场发射分热场和冷场,共性是分辨率高。
热场的束流大些,适合进行分析,但维护成本相对较高,维护要求高。
冷场做表面形貌观测是适合的,相对而言维护成本低些,维护要求不算高。
冷场发射电子枪
优点:单色性好,分辨率高
缺点:电子枪束流不稳定,束流小,不适合做能谱分析,每天要做一次Flash
热场发射电子枪
优点:电子束稳定,束流大
缺点:与冷场相比除了单色性和分辨率略差点外,其它找不出缺点。
热场在总发射电流(Total emission current)、最大探针电流(Maximum probe current)、电子束噪声(Beam noise)、发射电流漂移(Emission current drift)、工作真空(Operating vacuum)、阴极还原(Cathode regeneration)、对外部影响的敏感性(Sensitivity to external influence)等方面都具有一等的优势。
这些参数直接影响电镜的性能。
在阴极半径(Cathode radius)、有效电子源半径(Effective source radius)、发射电流密度(Emission current density)、标准亮度(Normalised brightness)等方面,冷场发射略胜一筹。
这几个参数总起来说就是冷场发射阴极的发射面积较小、能量集中,便于将电子束聚焦于一个很小的点,以提高分辨率。
但是在现代的电镜技术条件下,热场发射电镜通过采取各种有效措施,也能够将电子束汇聚于一个理想的点,达到冷场发射电镜的分辨率水平。
电子枪发射的电流强度很小,微安级别和纳安级别,为防止气体电离造成的大电流击穿高压电源,都需要高真空环境。
电子枪阴极都属于耗材系列。
差异和优劣:
1、点源直径不同及优劣:
钨灯丝电子枪阴极使用0.1mm直径的钨丝制成V形(发叉式钨丝阴极),使用V形的尖端作为点发射源,曲率半径大约为0.1mm;场发射电子枪阴极使用0.1mm直径的钨丝,经过腐蚀制成针状的尖阴极,一般曲率半径在
100nm~1μm之间。
由于制作工艺上的差异,造价不同,发叉式钨丝阴极便宜,场发射阴极很贵。
2、发射机制不同和优劣
钨灯丝属于热发射,在灯丝电极加直流电压,钨丝发热,使用温度一般在2600K~2800K之间,钨丝有很高的电子发射效率,温度越高电流密度越大,理想情况下的的电子枪亮度越高。
由于材料的蒸发速度随温度升高而急剧上升,因此钨灯丝的寿命比较短,一般在50~200小时之间,这个和设定的灯丝温度有关。
由于电子发射温度高,发射的电子能量分散度大,一般2ev,电子枪引起的色差会比较大。
场发射电子枪主要的发射机制不是靠加热阴极,而是在尖阴极表面增加强电场,从而降低阴极材料的表面势垒,并且可以使得表面势垒宽度变窄到纳米尺度,从而出现量子隧道效应,在常温甚至在低温下,大量低能电子通过隧道发射到真空中,由于阴极材料温度低,一般材料不会损失,因此寿命很长,可使用上万小时。
3、电子枪控制方式和电子源直径不同和优劣性。
钨灯丝是三极自给偏压控制,具有偏压负反馈电路,因此发射电流稳定度高;由于阴极发射点源面积大,因此电子源尺寸也比较大,50~100μm,发射可达几十~150μA,但电子枪的亮度低,因此当电子束斑聚焦到几个纳米的时候,总的探针电流很小, 信噪比太低是限制图像分辨率的根本因素,当前最佳钨灯丝扫描电镜最佳分辨率3.0nm.
场发射电子枪没有偏压负反馈电路,外界电源的稳定度是决定因素,发射电流稳定度相比要低一些;由于尖阴极发射电源面积很小100nm左右,没有明显的电子源,因此使用虚电子源作为电子光学系统设计的初始物而存在,电子虚源直径一般在2~20nm,电子枪亮度相比钨灯丝提高上千倍。
当束斑尺寸缩小到1nm以下时依然具有足够强的探针电流来获得足够的成像信号,因此分辨率高,当前最佳的场发射扫描电镜分辨率实现了亚纳米级别。
4、系统真空度不同及优劣
钨灯丝扫描电镜使用一般的高真空,两级真空泵系统获得0.001pa的真空度即可满足,因此造价低。
场发射扫描电镜使用超高真空,需要三级真空泵必须获得0.0000001Pa以上的真空度才可以稳定工作。
原因在于电子枪尖阴极不耐较低的真空中被电离的离子轰击,否则枪尖很容易被扫平而失效,这时候的性能还不如钨灯丝,其次电子枪阴极尖端在较低的真空下,吸附的气体分子会急剧加大阴极材料的表面势垒,造成电子枪发射不稳,亮度降低,所以必须使用超高真空一般是10的-8次方。
超高真空系统的造价明显比钨灯丝高很多。
超高真空的洁净度要好于钨灯丝的一般高真空,因此很长时间,也就是在灯丝寿命内,系统可以免清洗和维护。
钨灯丝扫描电镜相对维护周期要短一些。
5、钨灯丝和场发射是具有明显档次差异的,这也从价格上明确反映。
钨灯丝扫描电镜十几万,场发射几十万,都是美元。