扫描电镜SEM相关知识
- 格式:pptx
- 大小:47.34 MB
- 文档页数:71
扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
3、真空系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。
扫描电子显微镜(Scanning Electron Microscope)基础知识一、扫描电子显微镜的工作原理扫描电镜是用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。
其中二次电子是最主要的成像信号。
由电子枪发射的能量为 5 ~ 35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。
聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
二、扫描电镜具有以下的特点(1) 可以观察直径为0 ~ 30mm的大块试样(在半导体工业可以观察更大直径),制样方法简单。
(2) 场深大、三百倍于光学显微镜,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。
(3) 放大倍数变化范围大,一般为 15 ~ 200000 倍,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。
(4) 具有相当高的分辨率,一般为 3.5 ~ 6nm。
(5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。
采用双放大倍数装置或图像选择器,可在荧光屏上同时观察不同放大倍数的图像或不同形式的图像。
(6) 可进行多种功能的分析。
与 X 射线谱仪配接,可在观察形貌的同时进行微区成分分析;配有光学显微镜和单色仪等附件时,可观察阴极荧光图像和进行阴极荧光光谱分析等。
(7) 可使用加热、冷却和拉伸等样品台进行动态试验,观察在不同环境条件下的相变及形态变化等。
三、扫描电镜的主要结构1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。
扫描电镜分析简介
扫描电镜(Scanning Electron Microscope,简称SEM)是一种高分辨力电子显微镜技术,它是研究尺度上非常小的目标物质的分子结构的工具。
它的发展是电镜发展的新一步,因为它不仅可以观察物体的表面和形状,而且能够潜入表面深处,甚至可以分析其化学成分。
SEM技术的原理主要是使用激光束来照射样品表面,激光束穿过空气层在样品表面受到反弹,经过反弹的激光首先进入到放大镜系统,再经过扫描器激光射频控制,发射到样品表面,进而可以获得样品表面的高分辨率图像。
扫描电子显微镜是由支持用空气压进行绝缘的真空容器、电子源、偏振器、扫描仪和控制系统组成的一个设备。
它的真空容器由一个金属模型和一个电子枪组成,具有十几个测量系统,而电子源能够将千万伏特的电源供给给电子枪,使其产生电子束,该电子束射向样品,使样品表面放射出可以记录观测的电子信号。
扫描电子显微镜(SEM)介绍(SEM)扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。
1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。
经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。
近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。
目录扫描电镜的特点扫描电镜的结构工作原理扫描电镜的特点和光学显微镜及透射电镜相比,扫描电镜SEM(Scanning Electron Microscope)具有以下特点:(一) 能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。
(二) 样品制备过程简单,不用切成薄片。
(三) 样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。
(四) 景深大,图象富有立体感。
扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。
(五) 图象的放大范围广,分辨率也比较高。
可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。
分辨率介于光学显微镜与透射电镜之间,可达3nm。
(六) 电子束对样品的损伤与污染程度较小。
(七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。
扫描电镜的结构1.镜筒镜筒包括电子枪、聚光镜、物镜及扫描系统。
其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。
2.电子信号的收集与处理系统在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。
在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm至几十nm的区域,其产生率主要取决于样品的形貌和成分。
扫描电镜相关知识1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。
光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。
2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv=h / (2qmV)1/2=12.2 / (V)1/2 (Å)在10 KV 的加速电压之下,电子的波长仅为0.12Å,远低于可见光的4000 - 7000Å,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å之间,电子与原子核的弹性散射(Elastic Scattering) 与非弹性散射(Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。
3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。
4. 扫描式电子显微镜,其系统设计由上而下,由电子枪(Electron Gun) 发射电子束,经过一组磁透镜聚焦(Condenser Lens) 聚焦后,用遮蔽孔径(Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子(Secondary Electron) 或背向散射电子(Backscattered Electron) 成像。
5. 电子枪的必要特性是亮度要高、电子能量散布(Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射(Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。
扫描电镜测试相关知识点总结扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描物体表面并获取显微图像的仪器。
相比于传统光学显微镜,扫描电镜可以提供更高的分辨率和放大倍率,可以观察到更为详细的细节结构。
以下是与扫描电镜测试相关的一些知识点总结:1.SEM的工作原理:扫描电镜利用电子枪产生的高速电子束照射样品表面,样品与电子束发生相互作用后产生的不同信号被探测器接收并转化为电信号,进而生成二维或三维显微图像。
2.SEM的分辨率:扫描电镜的分辨率受到电子束的精细程度、样品的尺寸和形状、探测器的性能等因素的影响。
一般情况下,扫描电镜的分辨率可达到亚纳米级别。
3.SEM的样品制备:由于扫描电镜对样品的表面必须是导电性的,并且要求样品表面干净,因此在进行SEM观察前需要对样品进行适当的处理。
常见的制备方法包括金属喷镀、碳喷镀、薄层沉积、低温冷冻破碎等。
4.SEM观察模式:扫描电镜观察样品时可采用不同的观察模式,包括二次电子显微镜(SEI)模式和反射电子显微镜(BEI)模式。
SEI模式观察到的图像反映了样品表面的形貌特征,而BEI模式则主要反映了样品的晶体结构信息。
5.SEM的探测器:SEM内常配备有不同类型的探测器,常见的有二次电子探测器(SE)和反射电子探测器(BSE)。
SE探测器主要用于观察样品表面形貌特征,BSE探测器则用于获得样品的元素分布和晶体结构信息。
6.SEM的配套设备:SEM通常还配备有能量散射谱仪(EDS)和电子背散射衍射仪(EBSD)等附属设备。
EDS可用于分析样品中不同元素的含量和分布情况,而EBSD则可用于分析样品的晶体取向和晶界性质。
7.SEM在材料科学领域的应用:扫描电镜在材料科学领域广泛应用于材料的微观表征和分析。
通过SEM可以观察到材料的孔隙结构、晶格形貌、晶粒尺寸和形态、裂纹和缺陷等细节结构信息,为材料设计和性能优化提供重要参考。
扫描电子显微镜(Scanning Electronic Microscopy, SEM) 扫描电镜(SEM)就是介于透射电镜与光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。
扫描电镜的优点就是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。
目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察与微区成分分析,因此它就是当今十分有用的科学研究仪器。
电子束与固体样品的相互作用扫描电镜从原理上讲就就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。
通过对这些信息的接受、放大与显示成像,获得对就是试样表面性貌的观察。
具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。
电子束与固体样品表面作用时的物理现象一、背射电子背射电子就是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子与非弹性背反射电子。
弹性背反射电子就是指倍样品中原子与反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。
非弹性背反射电子就是入射电子与核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。
非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。
从数量上瞧,弹性背反射电子远比非弹性背反射电子所占的份额多。
背反射电子的产生范围在100nm-1mm深度,如下图所示。
电子束在试样中的散射示意图背反射电子产额与二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。
背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。
二、二次电子二次电子就是指背入射电子轰击出来的核外电子。