我所认识的应力应变关系
- 格式:doc
- 大小:222.00 KB
- 文档页数:8
应力应变的关系
应力和应变是力学中的两个重要概念,它们之间存在着一定的关系。
应力是指物体在受到外部力的作用下产生的内部阻力,即单位面积上的力的大小。
应力可以分为三种:拉应力、压应力和剪应力。
拉应力是指在物体受到拉伸力的作用下产生的内部阻力;压应力是指物体在受到压缩力的作用下产生的内部阻力;剪应力是指在物体受到剪切力的作用下产生的内部阻力。
应变是指物体在受到外力作用下,因其分子重新排列或形变而产生的变形量,即单位长度的形变。
应变可以分为线性应变和剪切应变。
线性应变是指物体在受到拉伸或压缩力的作用下产生的长度变化;剪切应变是指物体在受到剪切力的作用下产生的形变。
应力和应变之间的关系可以通过物体的材料性质来描述。
弹性材料的应力和应变之间存在线性关系,即受到的应力与应变成正比。
这个比例常数称为弹性模量,用来描述物体的弹性性质。
对于非弹性材料,应力和应变之间的关系则更加复杂,通常需要使用材料的本构方程进行描述。
总之,应力和应变之间的关系取决于物体的材料性质,并可以通过弹性模量或材料的本构方程来描述。
我所认识的应力与应变机械与动力工程学院动力工程专业学号602430107013 杨栋君一点的应力与应变是材料力学与弹塑性力学两门课程中两个非常重要的基本概念,材料力学主要讨论平面应力状态以及平面应力状态下的应变分析,而弹塑性力学则研究空间应力状态与应变状态。
我最先接触应力与应变是在材料力学的绪论中,材料力学中的应力首先是由研究构件(组成机械的零件或结构物的构件统称为构件,如建筑物的梁和柱,机床的轴等)截面处某一点的强弱程度而逐渐引入的。
应力定义为“单位面积上所承受的附加内力”。
材料力学中物体因受外力作用而变形,其内部各部分之间因相对位置改变而引起的相互作用称为内力,在m 上,围绕点取微小面积,上分布截面{ EMBED Equation.KSEE3 \* MERGEFORMAT |m内力的合力为(的方向和大小与点的位置和的大小有关),平均应力,代表在范围内,单位面积上内力的平均集度。
通过引入数学的极限法,随着的逐渐缩小,当趋于零时,平均应力的大小和方向都趋向于一定极限,即,称为点的应力。
应力是一个矢量,一般既不与截面垂直,也不与截面相切。
在弹塑性力学中,针对应力首先引入了体力(作用在物体微粒体积上的力)和面力(沿着物体表面的分布力)的概念。
可变形固体在外力等因素的作用下,其内部各部分之间就要产生相互的作用,内力指物体内的一部分与其相邻的另一部分之间相互作用的力。
应力就是载荷引起的物体内单位面积上的内力,表示内力在截面上某一点的分布集度。
这点与材料力学中的应力的定义基本一致。
但弹塑性力学中更细化的从空间(取平行于坐标面的3个两两垂直的微元平面)研究一点处的应力状态,当微元面趋于零时,上面作用的应力就代表过点任何截面上的应力,由爱因斯坦的求和约定引入了应力张量。
每一行为过点的一个面上的3个应力分量,便构成应力张量。
或者(应力张量的9个分量必须满足正交坐标系中二阶张量的变换公式)。
由此可以看出应力不是一个简单的矢量,它是对某点内力的精确描述。
应力应变关系我所认识的应力应变关系一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。
在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即,E ,,XX在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。
(1)具有一个弹性对称面的线弹性体的应力应变公式如下(2)正交各向异性弹性体的弹塑性体公式如下(3)各向同性弹性体的本构方程各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。
在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足:,,,,,,,CCCxxyz111213,,,,,,,CCCyxyz212223,,,,,,,CCCzxyz313233 (2-3),,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为:CCCa==,112233CCCCCCb=====,122113312332 (2-4)所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。
在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。
广义胡可定律如下式,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz2GE,,,1,zx,,,,,[()]zx,,,,,,,zzxy,2GE,,EGv泊松比剪切模量 E:弹性模量/杨氏模量 ,2(1),,,,,E虎克定律 ,G,,对于应变能函数理解有点浅在此就不多做介绍了。
2 屈服条件拉伸与压缩时的应力——应变关系曲线P,,A0,ll0,,lBC:屈服阶段,,CD:强化阶段塑性阶段,,DE:局部变形阶段,弹性变形时应力应变关系的特点1.应力与应变完全成线性关系;即应力主轴与全量应变主轴重合2.弹性变形是可逆的,与应变历史(加载过程)无关,即某瞬时的物体形状、尺寸只与该瞬时的外载有关,而与该瞬时之前各瞬间的载荷情况无关。
我所认识的应力与应变的关系机械与动力工程学院我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一 应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
应力应变关系矩阵现代工程学中,应力应变关系矩阵是一个非常重要的概念。
它是描述材料在受力情况下的应变与应力之间的关系的工具。
通过对应力应变关系矩阵的研究,我们可以更好地理解材料的力学性能,为工程设计提供科学依据。
应力应变关系矩阵是指材料在受力作用下所表现出的应变与应力之间的关系。
在材料受力的过程中,会产生内部的应力场,导致材料发生相应的变形,这种变形就是应变。
而应力则是描述单位面积上的力的大小,是导致材料发生变形的根本原因。
应力应变关系矩阵可以用数学形式表示,通过矩阵的运算可以推导出材料的应变与应力之间的关系。
在工程实践中,应力应变关系矩阵起着至关重要的作用。
通过对材料的应力应变关系进行研究,我们可以预测材料在受力情况下的力学性能,比如弹性模量、屈服强度、断裂强度等。
这些参数对工程设计和材料选择都具有重要意义。
只有深入了解材料的力学性能,才能确保工程设计的可靠性和安全性。
除了在工程设计中的应用,应力应变关系矩阵也被广泛应用于材料科学和力学研究领域。
通过对不同材料的应力应变关系进行研究,科学家们可以揭示材料的力学性质和变形规律,为新材料的设计和合成提供理论依据。
同时,应力应变关系矩阵还可以帮助我们理解材料在不同载荷下的变形行为,为材料力学的研究提供新思路和方法。
在实际工程中,对应力应变关系矩阵的认识也是至关重要的。
工程师们需要根据材料的应力应变特性来选择合适的材料和设计结构,以确保工程项目的安全性和可靠性。
只有深入了解材料的应力应变关系,才能准确预测材料在受力情况下的行为,为工程设计提供科学依据。
让我们总结一下本文的重点,我们可以发现,应力应变关系矩阵在材料科学和工程领域具有重要意义。
通过对这一概念的研究,我们可以更好地理解材料的力学性能,为工程设计和材料选择提供科学依据。
希望未来能够有更多的科研人员投入到这一领域的研究中,为材料科学和工程技术的发展做出贡献。
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一 应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
我所认识的应力和应变关系在这之前我认识了应力和应变的概念、性质以及从静力学和几何学的角度出发所得到的平衡方程和几何方程。
但是平衡方程仅反映了应力分量和外力分量的关系;几何方程仅建立了位移分量和应变分量的关系。
而谈到应力与应变的关系,对于可变形固体,在弹塑性力学中,在外力的作用下,其将发生变形。
变形分为两个阶段,弹性阶段和塑性阶段。
在弹性阶段,发生的弹性变形可以完全恢复,它是一个可逆过程。
此时,应力与应变的关系是一一对应的,是单值函数关系。
而在塑性阶段,所发生的塑性变形是不可以恢复的,是不可逆过程。
相对应的,塑性阶段的应力应变的关系是非线性关系,不存在一一对应的关系。
我所认识的应力和应变的关系就是本构关系。
本构关系也称为物理关系,它反应的是可变形材料的固有属性,实质上是一组联系力学参数和运动参数的方程式,也就是我们所说的本构方程。
在说应力与应变的关系之前,先说一下本构关系的相关影响因素,包括材料、环境、加载类型、以及加载速度。
即,),,(T t f εσ=。
另外,有各种各样的本构系,比如:弹性本构关系、塑性本构关系、粘弹性本构关系、粘塑性本构关系、各向同性本构关系、各向同性本构关系等等。
简单情况的本构关系:应力和应变的关系包括弹性和塑性的应力应变关系。
我们所说的是线性弹性体的应力应变关系,又分为简单应力状态和复杂应力状态。
在简单拉伸情况下,理想弹性材料的应力和应变的关系很简单,就是材料力学中的胡克定律: 。
而在塑性阶段,应力应变之间不再是简单的胡克定律,而是 。
另外,简单拉伸情况下的卸载定律是 。
在后继弹性阶段,也就是卸载后重新加载的材料会继续发生新的塑性变形,在此时的屈服称为后继屈服,相应的屈服点称为后继屈服点。
初始屈服和后继屈服的不同是:第一,应力的数值不一样,后继屈服的应力值更大;第二,屈服点的个数不一样。
初始屈服点只有一个,而后继屈服点会有好多个,则其对应的应力值也会有很多个。
最后,在卸载全部载荷后进行反向加载比如说把拉伸改成压缩,此时会产生Bauschinger 效应。
我所认识的应力和应变之间的关系在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。
在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。
对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。
所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。
这类线性弹性体独立的唐兴常数只有两个。
各向同性体本构关系特点:1.主应力与主应变方向重合。
2.体积应力与体积应变成比例。
3.应力强度与应变强度成比例。
4.应力偏量与应变偏量成比例。
工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩,式中分别为弹性模量、泊松比和剪切模量。
在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为()21E G μ=+。
屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。
习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。
对于加载过程如图1OA: 比例阶段;线性弹性阶段AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段EF : 颈缩阶段;应变弱化,软化阶段s σσ≥ C 点为初始屈服点具有唯一性。
在应力超过屈服应力后,如果在曲线上任意一点D 处卸载,应力和应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变eε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。
所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。
有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。
由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。
这样的一组方程即所谓的本构方程。
讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。
一.典型应力-应变关系图1-1 典型应力-应变曲线1) 弹性阶段(OC 段)该弹性阶段为初始弹性阶段OC (严格讲应该为CA ’),包括:线性弹性分阶段OA 段,非线性弹性阶段AB 段和初始屈服阶段BC 段。
该阶段应力和应变满足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE =,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。
2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。
CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (ultimate strength ),并用σb 表示。
超过强度极限后应变变大应力却下降,直到最后试件断裂。
这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。
这一现象称为“颈缩”(necking )。
此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。
这种应力降低而应变增加的现象称为应变软化(简称为软化)。
该阶段应力和应变的关系:)(εϕσ=。
3)卸载规律如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。
在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有p e εεε+= (1-1)即总应变等于弹性应变加上塑性应变。
该阶段应力和应变的关系满足εσ∆=∆E 。
4)卸载后重新加载DO ′段若在卸载后重新加载,则σ—ε曲线基本上仍沿直线O ′D 变化,直至应力超过D 点的应力之后,才会产生新的塑性变形。
由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化(简称为硬化)现象。
为了与初始屈服相区别,我们把继续发生新的塑性变形时材料的再度屈服称为后继屈服,相应的屈服点D 称为后继屈服点,相应的应力称为后继屈服应力,并σS ′用表示。
显然,由于硬化作用,σS ′>σS ,而且与σS 不同,σS ′不是材料常数,它的大小与塑性变形的大小和历史有关。
5)卸载全部载荷后反向加载如果在完全卸载后施加相反方向的荷载,譬如由拉伸改为压缩,则σ—ε曲线上弹性阶段OC 段沿曲线OA ′变化,有()()-+=s s σσ。
DO ′D ′段沿DO '的延长线下降,开始是呈直线关系,但到达D ″点后又开始进入屈服,此时()()-+≥''s s σσ,即出现反方向的屈服应力降低的现象,这种现象称为Bauschinger 效应。
这个效应说明材料在某一个方向的硬化将引起反方向的软化。
这样,即使是初始各向同性的材料,在出现塑性变形之后,就变为各向异性。
虽然在多数情况下为了简化而忽略Bauschinger 效应,但对有反复加载和卸载的情形,必须予以考虑。
二.屈服条件研究材料的塑性特性时,首先要弄清楚材料什么时候进入塑性变形阶段,即什么时候达到屈服。
固体在载荷作用下,最初处于弹性状态,随着载荷逐步增加至一定程度使固体内应力较大的部位出现塑性变形,固体由初始弹性状态进入塑性状态的过程就是初始屈服。
需要找到确定材料初始弹性状态的界限的准则,这个准则就称为初始屈服条件,简称屈服条件。
1.屈服函数与屈服曲面在简单应力状态下,如前面所述的应力应变关系曲线可知,当固体内部应力达到初始屈服极限时将产生初始屈服。
在复杂应力状态下,一般屈服条件可以表示为应力分量、应变分量、时间t 和温度T 的函数,它可写成:(,,,)0ij ij f t T σε= (3-1)不考虑时间效应和接近常温的情况下,时间t 和温度T 对塑性状态没什么影响,在初始屈服之前,应力和应变之间具有一一对应关系,所以应变分量ij ε可以用应力分量ij σ表示,因此屈服条件就仅仅是应力分量的函数了,它可表示为:()0ij f σ= (3-2)以应力张量的六个分量为坐标轴,就建立起一个六维应力空间,屈服函数()0ij f σ=表示应力空间中的一个曲面,即屈服曲面(简称屈服面)。
当应力点ij σ位于该曲面之内时(即()0ij f σ<),材料处于弹性状态;当应力点位于此曲面上时(即()0ij f σ=),材料由初始弹性开始屈服;如果应力进一步增加,材料进入塑性状态。
假设:1)材料是初始各向同性的。
屈服函数与坐标的选取无关,它可写成应力张量不变量的函数123(,,)0f I I I = (3-3)或写成主应力的函数123(,,)0f σσσ= (3-4)2)平均应力(静水应力)不影响塑性状态。
屈服函数只应与应力偏量的不变量有关,即''23(,)0f J J = (3-5)或者写成只是应力偏量主值的函数123(,,)0f S S S = (3-6)这个假设对金属材料成立,但对于一些非金属材料,如混凝土、岩石等则不成立。
通过第一个假设,屈服面由六维空间中的一个超曲面简化为三维主应力空间中的一个曲面;通过第二个假设,屈服面简化为一条曲线。
在主应力空间中,固体一点的应力状态可以用一个矢量OP 来描述(图3-5),矢量OP 可写为:123OP i j k σσσ=++ (3-7)分解成为偏量部分与球量部分有:123()m m m OP S i S j S k i j k OQ ON σσσ=+++++=+ (3-8)有上述第二个假定,ON 与材料的塑性状态无关。
从几何上看ON 与123,,σσσ轴的夹角相等,且正交于过原点的一个平面,这个平面的方程为:1230σσσ++= (3-9)这个平面平均应力等于0,习惯称之为π平面。
根据第二个假定,在主应力空间中,屈服面必定是一个垂直与π平面的等截面的柱面,它的母线与矢量ON 平行。
屈服面是一个等截面的柱面,它在任意垂直与ON 的平面上的投影曲线都是一样的,研究这个柱面的特征,只要研究它在π平面上的投影曲线即可,这条投影曲线称为屈服曲线。
2.常用屈服条件(1)Tresca 屈服条件1864年,法国人Tresca 做了一系列的金属挤压试验来研究屈服条件。
根据实验,他提出假设:当最大剪应力达到某一极限值时,材料发生屈服。
这个条件称为Tresca 屈服条件,也称为最大剪应力条件。
m a x k τ= (3-10)k 是和屈服有关的材料常数,可由单向拉伸实验或纯剪切实验确定。
(2)Mises 屈服条件Tresca 屈服条件在π平面上的几何图形是一个正六边形,它的六个顶点是由试验得到的,但是连接这六个点得直线却是假设的,而且Tresca 正六边形的角点也给问题的数学处理带来了不便。
在1913年,Mises 提出采用一个圆来连接Tresca 正六边形的六个顶点可能更加合理,它可以避免由于屈服曲线不光滑而造成的数学困难。
Mises 提出的屈服条件为:2J C = (3-11)其中,C 也是和材料性质有关的一个常数。
它可通过实验确定。
若做简单拉伸实验,则材料屈服时有21231,0,3s s J C σσσσσ=====,所以: 213s C σ= (3-12)若做纯剪实验,则材料屈服时有21232,0,s sJ Cσστστ=-====,所以2sCτ=(3-13)对大多数材料,实验证明Mises屈服条件比Tresca屈服条件更接近实验结果。
三.加载条件加载和卸载准则1.理想塑性材料加载和卸载由于理想塑性材料的加载面和屈服面总是保持一致,所以,加载函数和屈服函数可以统一表示为它们均与塑性变形的大小和加载历史无关。
于是,在荷载改变的过程中,如果应力点保持在屈服面上,即df=0,此时塑性变形可以任意增长,就称为加载。
当应力点从屈服面上退回屈服面内,即df<0,就表示变形状态从塑性变为弹性,此时不产生新的塑性变形,称为卸载。
理想塑性材料的上述加载和卸载准则,可以用数学形式表示为2.强化材料加载、卸载。