应力与应变
- 格式:doc
- 大小:1.27 MB
- 文档页数:16
材料力学中的应力与应变关系材料力学是研究材料在受力作用下的力学行为和性能的学科,应力与应变关系是其中的核心内容之一。
本文将讨论材料力学中的应力与应变的概念及其数学表示,以及应力与应变之间的线性关系与非线性关系。
一、应力的概念及表示应力是指材料单位面积上的内部力,常用符号σ表示。
根据受力情况的不同,可以分为正应力、切应力和体积应力。
正应力是指与作用力方向垂直的内部力,常用符号σ表示;切应力是指与作用力方向平行的内部力,常用符号τ表示;体积应力是指作用在体积内的内部力,常用符号p表示。
正应力的数学表示为σ = F/A,其中F为作用力的大小,A为受力面积。
切应力的数学表示为τ = F/A,其中F为切力的大小,A为受力面积。
体积应力的数学表示为p = F/V,其中F为体积力的大小,V为受力体积。
二、应变的概念及表示应变是指材料在受力作用下产生的形变程度,常用符号ε表示。
根据变形方式的不同,可以分为线性应变和体积应变。
线性应变是指在受力作用下,材料产生的长度或角度发生变化,常用符号ε表示;体积应变是指在受力作用下,材料产生的体积发生变化,常用符号η表示。
线性应变的数学表示为ε = ΔL/L0,其中ΔL为长度变化量,L0为原始长度。
体积应变的数学表示为η = ΔV/V0,其中ΔV为体积变化量,V0为原始体积。
三、应力与应变的线性关系在一定范围内,应力与应变之间可以表现为线性关系。
根据胡克定律(Hooke's Law),线性弹性材料的应力与应变之间满足σ = Eε,其中E为弹性模量。
弹性模量是材料刚度的度量,表示材料单位应力产生的单位应变。
常见的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量的数学表示为E = σ/ε,其中σ为应力,ε为线性应变。
剪切模量的数学表示为G = τ/γ,其中τ为切应力,γ为切应变。
泊松比的数学表示为ν = -εv/εh,其中εv为垂直方向的线性应变,εh为水平方向的线性应变。
弹性体力学中的应变与应力关系弹性体力学是研究物体在力的作用下变形和恢复原状的力学分支学科,研究的对象主要是固体物质。
在弹性体力学中,应变与应力是两个重要的概念,它们描述了物体的变形和受力状态。
应变和应力之间的关系在弹性体力学中具有重要意义,它们可以通过材料力学模型来描述。
应变是物体在受力作用下发生形变的程度。
一般来说,我们可以将应变分为线性应变和非线性应变。
线性应变是指物体的形变与受力成正比。
例如,当我们拉伸一根弹簧时,弹簧的长度会发生变化,而这种形变与拉力之间是线性相关的。
用数学的语言来表达,线性应变可以用应变量ε表示,其与外力F之间存在着关系ε=ΔL/L,其中ΔL为物体长度的增量,L为物体的原始长度。
非线性应变则是指物体的形变与受力不成比例。
在高强度材料的情况下,非线性应变是不可忽视的。
非线性应变与材料的本构关系有关,常用的本构关系模型包括背应变率本构关系、黏弹性本构关系等。
这些模型可以更准确地描述材料的力学行为,使得我们能够更准确地计算应变。
与应变相对应的是应力。
应力可以看作是物体单位面积的受力情况。
一般来说,应力可以分为正应力和剪应力。
正应力是指垂直于物体内部某一面的力的作用情况。
例如,当我们用一把剪刀剪断一根木棍时,剪刀的受力情况可以被描述为正应力。
剪应力则是指平行于物体内部某一面的力的作用情况。
例如,当我们剪断一个绳索时,绳索的受力情况可以被描述为剪应力。
应变与应力之间的关系又可以通过应力-应变曲线来描述。
应力-应变曲线是弹性体力学研究中的一个重要工具,它可以体现材料的力学性质。
一般来说,应力-应变曲线可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变成正比。
这个阶段的曲线是一个直线,斜率即为弹性模量,用来描述材料的刚度。
当应力超过一定值时,物体进入屈服阶段。
在屈服阶段,物体的应变不再与应力成正比,而是呈现出非线性关系。
此时物体会发生塑性变形,形成剩余应变。
当应力进一步增加时,物体可能发生断裂。
材料力学中的应力与应变关系引言:材料力学是研究材料在外力作用下的力学性能和变形规律的学科,应力与应变是材料力学中最基础的概念之一。
应力与应变关系的研究对于材料的设计、工程应用以及材料力学理论的发展具有重要意义。
本文将从宏观和微观两个角度出发,探讨材料力学中的应力与应变关系。
一、宏观角度下的应力与应变关系宏观角度下的应力与应变关系是指在宏观尺度上,材料在外力作用下的力学响应。
我们可以通过引入应力和应变的概念来描述材料的力学行为。
1. 弹性应力与应变关系弹性应力与应变关系是指材料在弹性阶段内,应力与应变之间的关系。
弹性材料在受力后能够恢复到原始形状,且应力与应变呈线性关系。
根据胡克定律,应力与应变之间的关系可以表示为:σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。
弹性模量是材料的一种力学性能参数,反映了材料对外力的抵抗能力。
2. 塑性应力与应变关系塑性应力与应变关系是指材料在超过弹性极限后,发生塑性变形时的应力与应变关系。
塑性材料在受力后会发生永久性变形,应力与应变之间不再呈线性关系。
根据真应力与真应变的定义,塑性应力与应变关系可以表示为:σ' = Kε'其中,σ'表示真应力,K表示材料的强度系数,ε'表示真应变。
强度系数是衡量材料塑性变形能力的指标。
3. 强化应力与应变关系强化应力与应变关系是指材料在受到强化处理后,应力与应变之间的关系。
强化处理是通过改变材料的晶体结构或添加外部组分来提高材料的力学性能。
强化应力与应变关系的表达式与具体的强化方式有关,可以通过试验或模型计算得到。
二、微观角度下的应力与应变关系微观角度下的应力与应变关系是指材料在微观尺度上,原子或分子之间的相互作用导致的力学响应。
我们可以通过分子动力学模拟或统计力学方法来研究材料的微观力学行为。
1. 分子动力学模拟分子动力学模拟是一种通过求解牛顿运动方程来模拟材料微观力学行为的方法。
通过分子动力学模拟,我们可以得到材料的应力与应变关系,并研究材料的力学性能和变形机制。
弹性体的应力与应变弹性体是一种在受力作用下可以发生形变,但当受力停止时,能够恢复原来形状和大小的材料。
了解弹性体的应力与应变关系对于工程设计和材料科学具有重要意义。
在本文中,我们将探讨弹性体的应力与应变之间的关系,分析材料的弹性性质以及应力与应变的计算方法。
1. 应力的概念与计算方法应力是指单位面积上作用的力,合理地计算应力是分析弹性体性质的关键。
在计算应力时,常用到两种基本的力学概念:张力和压力。
张力是指沿一维方向的受力情况,通常用F表示,单位为牛顿。
而压力是指在一个平面上均匀分布的力,用P表示,单位是帕斯卡。
应力的计算公式如下:应力 = 受力 / 横截面积2. 应变的概念与计算方法应变是指材料在受力作用下发生的形变,一般用ΔL / L表示。
其中,ΔL是材料长度的变化量,L是材料的初始长度。
应变可以分为线性弹性应变和非线性应变。
线性弹性应变是指材料在受力作用下,形变与受力成正比的状态。
计算线性弹性应变的方法如下:应变 = 形变 / 初始长度而非线性应变则需要更复杂的计算方法来进行分析,涉及到材料的本构关系等。
3. 应力与应变的关系应力与应变之间存在一定的关系,即应力-应变曲线。
弹性体的应力-应变曲线通常可以分为三个阶段:弹性阶段、屈服点和塑性阶段。
在弹性阶段,材料受力时会产生应变,但当受力停止时,材料会完全恢复到原来的状态。
这是因为材料内部的原子或分子只发生了相对位移,而没有发生永久性的结构变化。
当应力超过材料的屈服点时,就进入了屈服点阶段。
在这个阶段中,材料开始发生塑性变形,不再能够完全恢复到原来的状态,具有一定的永久性形变。
塑性阶段是材料的应力与应变不再成正比,继续增加应力会导致更大的应变。
这是由于材料的内部结构发生了永久性的改变,无法恢复原状。
4. 弹性模量和刚度弹性模量是描述材料抵抗形变的能力,可以用来评估材料的刚度。
弹性模量越大,表示材料越难发生形变,具有较高的刚度。
常用的弹性模量有三种:杨氏模量、剪切模量和体积模量。
弹性力学中的应力与应变关系弹性力学是力学的一个重要分支,研究物体在外力的作用下产生的形变与应力的关系。
在弹性力学理论中,应力与应变关系是最为核心的概念之一。
本文将探讨弹性力学中的应力与应变关系的基本原理,并从不同角度对其进行分析。
一、基本概念在弹性力学中,应力是描述物体内部单位面积受力情况的物理量。
它可以分为正应力和剪应力。
正应力表示物体在垂直于某一平面上的受力情况,剪应力表示物体在平行于某一平面上的受力情况。
应力的大小一般采用希腊字母σ表示。
应变是描述物体形变情况的物理量。
它可以分为线性应变和体积应变。
线性应变表示物体中某一方向上的长度相对变化,体积应变表示物体在各个方向上的体积变化。
应变的大小可以用希腊字母ε表示。
二、胡克定律胡克定律是描述弹性体材料中应力与应变关系最基本的定律。
其数学表达式为σ = Eε,即应力等于弹性模量与应变之积。
其中,弹性模量E是描述物体对应变的抵抗能力的物理量。
根据胡克定律,应力与应变之间的关系是线性的,即若应变增大,则应力也会相应增大。
胡克定律适用范围有限,对于非线性应力-应变关系的材料,需要采用其他力学模型进行描述。
例如,当外力作用超出一定范围时,弹性体会发生塑性变形,此时应力和应变之间的关系就无法再用胡克定律来描述。
三、材料力学模型由于胡克定律的局限性,研究者们提出了各种各样的材料力学模型来描述应力与应变之间的关系。
其中,最常用的有线性弹性模型、非线性弹性模型和本构模型。
线性弹性模型是胡克定律的拓展,它适用于应力与应变关系呈线性关系的情况。
在这种模型中,应力与应变之间的关系是单一的、唯一的。
当外力作用停止后,物体能够完全恢复到初始状态。
非线性弹性模型适用于应力与应变关系不再呈线性关系的情况。
它可以更好地描述材料的实际变形情况。
在这种模型中,应力与应变之间的关系可以是非线性的、曲线状的。
本构模型是一种综合考虑多种因素的力学模型,它可以更全面地描述材料的应力与应变关系。
流体力学中应力应变关系
流体力学中应力应变关系是指在流体中,应力和应变之间的关系。
应力是指流体中单位面积内受到的力,而应变则是指在受力下流体的形状和大小发生的变化。
在流体中,应力和应变之间的关系是非线性的,并且与流体的性质密切相关。
对于牛顿流体(即流体的粘度不随剪切速率变化的流体),应力
应变关系可以用简单的线性关系来描述。
这种情况下,应力是剪切应力,而应变则是剪切应变。
而对于非牛顿流体(即流体的粘度随剪切速率变化的流体),应力应变关系则更为复杂,需要使用更加复杂的
数学模型来描述。
在流体力学应用中,了解应力应变关系非常重要。
例如,工程师需要了解流体的应力应变关系,以便设计和优化流体系统。
此外,医生也需要了解流体的应力应变关系,以便更好地理解人体内的生理过程。
因此,流体力学中应力应变关系是一个非常重要的概念。
- 1 -。
材料应变与应力的关系《材料应变与应力的关系:你知道吗?》我想跟你聊聊材料里一个特别神奇又很实在的事儿,就是应变和应力的关系。
这听起来有点专业,可别被吓着,其实就像咱们生活里常见的一些现象一样好理解。
你看,应力呢,就好比是材料内部的一种“小情绪”。
比如说,你拉一根橡皮筋,你给它施加的这个拉力,在橡皮筋内部就产生了应力。
就好像你给一个人安排了好多工作,这个人就会感觉到压力一样,材料受到外力的时候,内部就有应力了。
那应力是怎么产生的呢?当我们对材料施加力的时候,不管是拉力、压力还是扭力,材料内部的原子啊、分子啊就像一群小伙伴,它们的排列被打乱了,就开始互相“抱怨”,这种互相的作用就是应力。
应变呢,就像是材料的一种“反应”。
还说那根橡皮筋,你拉它的时候,它变长了,这个变长的变化就是应变。
这就好比一个人被安排了太多工作,开始变得很疲惫,这种状态的改变就像是材料的应变。
材料在应力的作用下,它的形状或者尺寸会发生改变,这个改变的程度就是应变。
你可能会想,这应力和应变到底有啥具体关系呢?这就像一场拔河比赛。
如果两队力量差不多,绳子受到的应力就不是特别大,那绳子的应变也就比较小,可能就稍微被拉长一点。
可要是一边的力量超级大,应力就很大,那绳子的应变就大得很,可能都被拉得老长,甚至有可能断掉。
在材料里也是这样,应力越大,一般来说应变就越大。
不过这可不是绝对的哦。
不同的材料对待应力的反应可不一样呢。
就像不同性格的人对待压力的反应不同。
有的材料很“坚强”,像钢铁,你给它很大的应力,它的应变相对比较小。
就好比那些很抗压的人,不管工作压力多大,还是能稳稳地应对,不会轻易改变自己的状态。
而有些材料比较“脆弱”,像玻璃,一点点应力可能就导致很大的应变,一下子就碎了,就像那些心理比较脆弱的人,一点压力就可能崩溃。
那这个应力和应变的关系有啥用呢?哎呀,用处可大了去了。
比如说盖房子,建筑师要知道建筑材料的应力应变关系。
如果选错了材料,应力大的时候应变太大,房子可能就变形了,这可不得了,就像你穿了不合脚的鞋子,走路都难受,房子变形了还能住人吗?再比如说造汽车,汽车的各个部件在行驶过程中受到各种力,要是不了解材料的应力应变关系,部件可能就坏掉了,那多危险啊。
第三章 应力与强度计算一.内容提要本章介绍了杆件发生基本变形时的应力计算,材料的力学性能,以及基本变形的强度计算。
1.拉伸与压缩变形 1.1 拉(压)杆的应力1.1.1拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式N FAσ= (3-1)式中N F 为该横截面的轴力,A 为横截面面积。
正负号规定 拉应力为正,压应力为负。
公式(3-1)的适用条件:(1) 杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;如果是偏心受压或受拉的轻质杆件,那么必然存在靠近轴力的一侧受压,远离轴力的一侧受拉,应力肯定不同,方向相反。
并存在中和轴。
(即应力在中和轴处为0)(2)适用于离杆件受力区域稍远处的横截面;(大于截面宽度的长度范围内——圣维南) (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀(即应力集中);(4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时,可应用式(3-1)计算,所得结果的误差约为3%。
1.1.2拉(压)杆斜截面上的应力(如图3-1)图3-1拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2)正应力 2cos ασσα=(3-3)切应力1sin 22ατσα=(3-4)式中σ为横截面上的应力。
正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
ασ 拉应力为正,压应力为负。
ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。
两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。
当α=090时,即纵截面上,ασ=090=0。
(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=。
1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 1l l l ∆=- 轴向线应变 l lε∆=横向变形 1b b b ∆=- 横向线应变 b bε∆'=正负号规定 伸长为正,缩短为负。
(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即E σε= (3-5)或用轴力及杆件的变形量表示为N F ll EA∆=(3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
公式(3-6)的适用条件:(a)材料在线弹性范围内工作,即p σσ〈;(b)在计算l ∆时,l 长度内其N 、E 、A 均应为常量。
如杆件上各段不同,则应分段计算,求其代数和得总变形。
即1niii i iN l l E A =∆=∑(3-7) (3)泊松比当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。
即ενε'=(3-8) 1.3 材料在拉(压)时的力学性能 1.3.1低碳钢在拉伸时的力学性能 应力——应变曲线如图3-3所示。
图3-3 低碳钢拉伸时的应力-应变曲线卸载定律:在卸载过程中,应力和应变按直线规律变化。
如图3-3中dd ’直线。
冷作硬化:材料拉伸到强化阶段后,卸除荷载,再次加载时,材料的比例极限升高,而塑性降低的现象,称为冷作硬化。
如图3-3中d ’def 曲线。
图3-3中,of ’ 为未经冷作硬化,拉伸至断裂后的塑性应变。
d ’f ’ 为经冷作硬化,再拉伸至断裂后的塑性应变。
四个阶段四个特征点,见表1-1。
阶 段 图1-5中线段 特征点 说 明弹性阶段oab比例极限p σ 弹性极限e σp σ为应力与应变成正比的最高应力e σ为不产生残余变形的最高应力屈服阶段bc屈服极限s σs σ为应力变化不大而变形显著增加时的最低应力强化阶段 ce 抗拉强度b σ b σ为材料在断裂前所能承受的最大名义应力局部形变阶段ef产生颈缩现象到试件断裂 表1-1主要性能指标,见表1-2。
性能 性能指标 说明弹性性能 弹性模量E 当p E σσσε≤=时, 强度性能屈服极限s σ 材料出现显著的塑性变形 抗拉强度b σ材料的最大承载能力 塑性性能延伸率1100%l llδ-=⨯ 材料拉断时的塑性变形程度 截面收缩率1100%A A Aψ-=⨯材料的塑性变形程度1.3.2 低碳钢在压缩时的力学性能图3-4 低碳钢压缩时的应力-应变曲线应力——应变曲线如图3-4中实线所示。
低碳钢压缩时的比例极限p σ、屈服极限s σ、弹性模量E 与拉伸时基本相同,但测不出抗压强度b σ1.3.3铸铁拉伸时的力学性能图3-5 铸铁拉伸时的应力-应变曲线应力——应变曲线如图3-5所示。
应力与应变无明显的线性关系,拉断前的应变很小,试验时只能侧得抗拉强度b σ。
弹性模量E 以总应变为0.1%时的割线斜率来度量。
1.3.3铸铁压缩时的力学性能应力——应变曲线如图3-6所示。
图3-6 铸铁压缩时的应力-应变曲线铸铁压缩时的抗压强度比拉伸时大4—5倍,破坏时破裂面与轴线成045~35。
宜于做抗压构件。
1.3.4塑性材料和脆性材料延伸率δ〉5%的材料称为塑性材料。
延伸率δ〈5%的材料称为脆性材料。
1.3.5屈服强度0.2σ对于没有明显屈服阶段的塑性材料,通常用材料产生0.2%的残余应变时所对应的应力作为屈服强度,并以0.2σ表示。
1.4 强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。
塑性材料 [σ]=s s n σ ; 脆性材料 [σ]=b bn σ 其中,s b n n 称为安全系数,且大于1。
强度条件:构件工作时的最大工作应力不得超过材料的许用应力。
对轴向拉伸(压缩)杆件[]NAσσ=≤ (3-9) 按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。
2.扭转变形2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。
2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示。
2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即G τγ= (3-10)式中G 为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E 及泊松比ν),其数值由实验决定。
对各向同性材料,E 、 ν、G 有下列关系2(1)EG ν=+ (3-11)2.5 圆截面直杆扭转时应力和强度条件 2.5.1 横截面上切应力分布规律 用截面法可求出截面上扭矩,但不能确定切应力在横截面上的分布规律和大小。
需通过平面假设,从几何、物理、平衡三方面才能唯一确定切应力分布规律和大小。
(1)沿半径成线性分布,圆心处0τ=,最大切应力在圆截面周边上。
(2)切应力方向垂直半径,圆截面上切应力形成的流向与该截面上扭矩转向相等,图3-7。
2.5.2切应力计算公式横截面上某一点切应力大小为p pT I ρτ=(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。
圆截面周边上的切应力为max tTW τ=(3-13) 式中p t I W R=称为扭转截面系数,R 为圆截面半径。
2.5.3 切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。
(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。
在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。
因此,设计空心轴比实心轴更为合理。
2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。
因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ (3-14) 对等圆截面直杆[]maxmax tT W ττ=≤ (3-15) 式中[]τ为材料的许用切应力。
3.弯曲变形的应力和强度计算 3.1 梁横截面上正应力3.1.1中性层的曲率与弯矩的关系1zMEI ρ=(3-16) 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。
3.1.2横截面上各点弯曲正应力计算公式ZMy I σ=(3-17)式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离。
由式(3-17)可见,正应力σ的大小与该点到中性轴的距离成正比。
横截面上中性轴的一侧为拉应力,另一侧为压应力。
在实际计算中,正应力的正负号可根据梁的变形情况来确定,位于中性轴凸向一侧的各点均为拉应力,而位于中性轴凹向一侧的各点均为压应力。
最大正应力出现在距中性轴最远点处max max max max z zM My I W σ=•= (3-18) 式中,max z z I W y =称为抗弯截面系数。
对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-。
若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等。
3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为[]maxmax zM W σσ=≤ (3-19) 由正应力强度条件可进行三方面的计算:(1)校核强度 即已知梁的几何尺寸、材料的容许应力以及所受载荷,校核正应力是否超过容许值,从而检验梁是否安全。
(2)设计截面 即已知载荷及容许应力,可由式[]maxz M W σ≥确定截面的尺寸(3)求许可载荷 即已知截面的几何尺寸及容许应力,按式[]max z M W σ≤确定许可载荷。
对于由拉、压强度不等的材料制成的上下不对称截面梁(如T 字形截面、上下不等边的工字形截面等),其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ (3-20a ) []maxmax 2y c zM y I σσ=≤ (3-20b ) 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离。
若梁上同时存在有正、负弯矩,在最大正、负弯矩的横截面上均要进行强度计算。
3.3梁的切应力z z QS I bτ*= (3-21) 式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度。