2020华师大数轴练习题
- 格式:docx
- 大小:41.69 KB
- 文档页数:2
数轴 预习练习1(1)预习要求1.预习课本P22-23有关内容,完成练习。
2.掌握数轴三要素,能正确画数轴,理解有理数与数轴上点的对应关系.尝试练习一同学们自己画一条数轴。
中的各图是不是数轴?为什么?画出数轴,并在数轴上表示下列各数的点。
(1) 4,-2,-4.5, 131, 0, -232(2)100,50,0,-100,-150尝试练习二1. 指出数轴上A 、B 、C 、D 、E 各点分别表示什么数。
2. 在数轴上与表示1的点的距离是2个单位长度的点有几个?请你有数轴上把它们画出来,它们分别表示什么数?尝试练习三在数轴上有M 、N 两点(如图),请回答:(1)将M 点向右移动5个单位,点M 表示什么数?(2)将N 点向左移动2个单位,点N 表示什么数?(3)将M 、N 点怎样移动才能使它们表示的数是0?(2)一、选择题。
1、在数轴上,原点及原点左边所表示的数是( )A 、正数B 、负数C 、不是负数D 、不是正数2、下列语句中正确的是( )数轴上的点只能表示整数两个不同的有理数可以用数轴上的同一点表示数轴上的一个点,只能表示一个数数轴上的点所表示的数都是有理数二、填空。
1、数轴上表示-3的点在原点 侧,距原点的距离是 ,表示-4的点在原点的 侧,距原点的距离是 。
2、与原点的距离为3个单位的点有 个,它们分别表示有理数 和 。
3、在数轴上,A 点表示3,现在将A 点向右移动5个单位,再向左移动12个单位,这时A 点必须向 移动 单位,才能到达原点。
三、1、把下列各数在数轴上表示出来。
(1)、-1 ,221,0 ,-0.5 (2)、50 ,0 ,-100 ,-2502、指出数轴上A 、B 、C 、D 、E 各点表示什么数。
四、一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?1、向右移动2个单位,再向左移动3个单位。
2、向右移动个单位,再向左移动3个单位。
3、向右移动个单位,再向左移动3个单位。
华师大新版七年级上册《2.2数轴》同步练习一.选择题(共10小题)1.如图,数轴上的六个点满足AB=BC=CD=DE=EF,则在点B、C、D、E对应的数中,最接近﹣10的点是()A.点B B.点C C.点DD.点E2.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,点B()A.不对应任何数B.对应的数是2019C.对应的数是2019 D.对应的数是20193.数轴上大于﹣4且不大于4的整数的和是()A.4 B.﹣4 C.16 D.04.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0D.﹣a﹣b>05.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O 6.如图,如果数轴上A,B两点之间的距离是9,那么点B表示的数是()A.4 B.﹣4C.5 D.﹣57.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0、a+b>0、ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.无法确定8.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c﹣2a=7,则原点应是()A.A点B.B点C.C点D.D点9.数轴上A,B两点的距离是5.若点A表示的数为1,则点B表示的数为()A.6 B.﹣4 C.6或﹣4 D.﹣610.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2009的点与圆周上表示数字()的点重合.A.0 B.1 C.2 D.3二.填空题(共10小题)11.如图,在数轴上,点A,B分别在原点O的两侧,且到原点的距离都为2个单位长度,若点A以每秒3个单位长度,点B以每秒1个单位长度的速度均向右运动,当点A与点B重合时,它们所对应的数为.12.如果数轴上点A表示的数为2,将点A向右移动3个单位长度,再向左移动7个单位长度到达点B,那么终点B表示的数是.13.一个点从原点出发,沿数轴正方向移动3个单位长度后,又向反方向移动4个单位长度,此时这个点表示的数是.14.一只小球落在数轴上的某点P0,第一次从p0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4…,若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点P0所表示的数是.15.一个点从数轴上的原点开始,先向右移动一个单位长度,再向左移动4个单位长度,从图中可以看出,终点表示的数是﹣3.请参照图,完成填空:(1)如果点A表示的数是﹣5,向左移动4个单位长度,那么终点表示的数是.(2)如果点B表示的数是4,将点B向右移动6个单位长度,再向左移动5个单位长度,那么终点表示的数是.16.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2019个单位长度.17.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数共有个.18.数轴上一点P表示的数是6,先把这个点向右移动3个单位长度,再向左移动5个单位长度,则点P表示的数是.19.如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是﹣,则B点在数轴上对应的数值是.20.已知数轴上的A、B两点所表示的数分别为﹣4和7,C为线段AB的中点,则点C所表示的数为三.解答题(共3小题)21.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.23.如图,在数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P是AB的中点时t的值;(3)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)在点P由点B到点A的返回过程中,点P表示的有理数是多少(用含t的代数式表示).参考答案一.选择题1.B.2.C.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.A.二.填空题11.4.12.﹣2.13.﹣1.14.3,2.15.﹣9;5.16.4035或4036.17.3.18.4.19.0或.20.1.5.三.解答题21.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.22.解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.23.解:(1)点P表示的有理数为﹣4+2×2=0;(2)6﹣(﹣4)=10,10÷2=5,5÷2=2.5,(10+5)÷2=7.5.故点P是AB的中点时t=2.5 或7.5;(3)在点P由点A到点B的运动过程中,点P与点A的距离为2t;(4)在点P由点B到点A的返回过程中,点P表示的有理数是6﹣2(t﹣5)=16﹣2t.。
a 0-1b b 0ac §2.2 数轴基础巩固训练一、选择题1.图1中所画的数轴,正确的是( )-1210-2A 21543B -1210C -1210D 2.在数轴上,原点及原点左边的点所表示的数是( )A .正数B .负数C .非负数D .非正数3.与原点距离是2.5个单位长度的点所表示的有理数是( )A .2.5B .-2.5C .±2.5D .这个数无法确定4.关于-32这个数在数轴上点的位置的描述,正确的是( ) A .在-3的左边 B .在3的右边 C .在原点与-1之间 D .在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-96.不小于-4的非正整数有( )A .5个B .4个C .3个D .2个7.如图所示,是数a ,b 在数轴上的位置,下列判断正确的是( )A .a<0B .a>1C .b>-1D .b<-1二、填空题1.数轴的三要素是_____________.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a ,b ,c 在数轴上的位置如图所示,用“<”将a ,b ,•c•三个数连接起来________.5.大于-3.5小于4.7的整数有_______个. 6.用“>”、“<”或“=”填空.(1)-10______0;(2)32________-23;(3)-110_______-19;(4)-1.26________114; (5) 23________-12;(6)- _______3.14;(7)-0.25______-14;(8)-14________15. 7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起来.-312,4,2.5,0,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.5430-1-2-3-421F ED C B A3.一个点从数轴上表示-2的点开始,按下列条件移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.综合创新训练四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下: A 队:-50分;B 队:150分;C 队:-300分;D 队:0分;E 队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A 队与B 队相差多少分?C 队与E 队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、•玩具店的位置,以及小明最后的位置.五、竞赛题1.比较a 与-a 的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A ,B ,C ,•D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是哪一点?D C B A中考题回顾六、中考题1.(2003·安徽)冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是( )A .-10℃,-7℃,1℃;B .-7℃,-10℃,1℃C .1℃,-7℃,-10℃;D .1℃,-10℃,-7℃2.(2003·广西)比较大小:-1_______-2.3.(2002·内蒙古)比较大小:-23_______-34. 4.(2003·南宁)比较-3与2的大小.答案一、1.D 2.D 3.C 4.D 5.C 6.A 7.D二、1.原点、正方向和单位长度 2.右 左 3.右 6 左 8 14 4.c<a<b • 5.86.(1)< (2)> (3)> (4)< (5)> (6)< (7)= (8)< 7.6或-10三、1.画图(略) -5<-312<-112<0<1<2.5<4<7 2.A0 B-1 C413 D-2.5 E213 F-4 3.如图所示:(1)303-121-2(2)-2-410-7-4(3)-9-1-2-3-410-5-7-4(4)-6-1-2-3-4-810-5-7-4四、1.(1)C 队 A 队 D 队 E 队 B 队;(2)如图所示:-3001000-200200-100E D CB A(3)A 队与B 队相差200分,C 队与E 队相差400分.2.如图所示,小明位于超市西边10米处.玩具店书店超市-30500-20-10五、1.(1)当a>0时,a>-a ;(2)当a=0时,a=-a ;(3)当a<0时,a<-a .2.B 为原点.六、1.C 2.> 3.> 4.-3<2.。
华师大新版七年级上学期《2.2.1 数轴》同步练习卷一.选择题(共1小题)1.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字()的点重合.A.0B.1C.2D.3二.填空题(共10小题)2.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字的点重合.3.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C 点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.4.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.5.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.6.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,请你猜想终点B表示什么数?A,B两点间的距离为多少?7.如图,A、B两点在数轴上对应的数分别是﹣20、24,点P、Q两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,当点P、Q在A、B之间相向运动,且满足OP=OQ,则点P对应的数是.8.将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x﹣3,B 表示的数为2x﹣5,C表示的数为5﹣x,则x=;若将△ABC向右滚动,则点2016与点重合.(填A.B.C)9.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是.10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.11.如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是.三.解答题(共4小题)12.如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示﹣1的点重合.(1)圆的周长为多少?(2)若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(如数轴上表示﹣2的点与点B重合,(3)若将数轴按照顺时针方向绕在该圆上,数轴上表示﹣3的点与点C重合…),那么数轴上表示﹣2018的点与圆周上哪个点重合?13.阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q表示的数为﹣1,点P表示的数为0,点K表示的数为1,点R表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是有序点对[Q,R]的好点,但点K不是有序点对[R,Q]的好点.同理可以判断:点P有序点对[Q,R]的好点,点R有序点对[P,K]的好点(填“是”或“不是”);(2)如图2,数轴上点M表示的数为﹣1,点N表示的数为5,若点X是有序点对[M,N]的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为﹣20,点B表示的数为10.现有一只电子蚂蚁C从点B出发,以每秒2个单位的速度向左运动t秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.14.如图:已知A、B、C是数轴(O是原点)上的三点,点C表示的数是6,线段BC=4,线段AB=12.(1)写出数轴上A、B两点表示的数.(2)动点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,t为何值时,原点O是线段PQ的中点?15.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是的2倍点,点B是的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q 出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)华师大新版七年级上学期《2.2.1 数轴》同步练习卷参考答案与试题解析一.选择题(共1小题)1.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字()的点重合.A.0B.1C.2D.3【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.【解答】解:∵﹣1﹣(﹣2018)=2017,2017÷4=504…1,∴数轴上表示数﹣2018的点与圆周上起点处表示的数字重合,即与3重合.故选:D.【点评】考查了数轴,本题找到表示数﹣2018的点与圆周上起点处表示的数字重合,是解题的关键.二.填空题(共10小题)2.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2018的点与圆周上表示数字3的点重合.【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.【解答】解:∵﹣1﹣(﹣2018)=2017,2017÷4=504…1,∴数轴上表示数﹣2018的点与圆周上起点处表示的数字重合,即与3重合.故答案为3.【点评】考查了数轴,本题找到表示数﹣2018的点与圆周上起点处表示的数字重合,是解题的关键.3.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C 点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第1345次移动到的点到原点的距离为2018.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:(3n+2),当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,(3n+2)=2018,n=(不合题意).故答案为:1345.【点评】本题考查了数轴,以及用正负数可以表示具有相反意义的量,还考查了数轴上点的坐标变化和平移规律(左减右加),考查了一列数的规律探究.对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.4.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036次移动后该点到原点的距离为2018个单位长度.【分析】根据数轴上点的坐标变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对奇数项、偶数项分别探究,找出其中的规律(相邻两数都相差3),写出表达式就可解决问题.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.【点评】本题考查了数轴,以及数轴上点的坐标变化和平移规律(左减右加),对这列数的奇数项、偶数项分别进行探究是解决这道题的关键.5.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.6.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A,B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A,B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣92,A,B两点间的距离是88.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,请你猜想终点B表示什么数?A,B两点间的距离为多少?【分析】根据数轴得出终点B表示的数,求出A与B的距离,归纳总结得到规律,得出一般结果即可.【解答】解:(1)∵点A表示数﹣3,∴点A向右移动7个单位长度,终点B表示的数是﹣3+7=4,A,B两点间的距离是|﹣3﹣4|=7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3﹣7+5=1,A,B两点间的距离为3﹣1=2;(3)∵点A表示数﹣4,∴将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣4+168﹣256=﹣92,A、B两点间的距离是|﹣4+92|=88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为(m+n﹣p),A,B两点间的距离为|n﹣p|.故答案为:4,7;1,2;﹣92,88.【点评】本题考查的是数轴的定义及数轴上两点之间的距离公式,弄清题中的规律是解本题的关键.7.如图,A、B两点在数轴上对应的数分别是﹣20、24,点P、Q两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,当点P、Q在A、B之间相向运动,且满足OP=OQ,则点P对应的数是﹣或﹣16.【分析】先分别表示出运动时间为t秒时,点P、Q在数轴上对应的数,再根据OP=OQ列出方程求得t的值,进一步得到点P对应的数.【解答】解:依题意,运动时间为t秒时,点P、Q在数轴上对应的数分别为﹣20+2t,24﹣4t,∵OP=OQ,∴|﹣20+2t|=|24﹣4t|,∴﹣20+2t=24﹣4t,或﹣20+2t=﹣(24﹣4t),解得t=,或t=2,当t=时,点P对应的数是﹣20+2×=﹣,当t=时,点P对应的数是﹣20+2×2=﹣16.答:点P对应的数是﹣或﹣16.故答案为﹣或﹣16.【点评】本题考查了数轴,主要利用了数轴上两点间的距离的求法,以及解含有绝对值的方程.8.将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x﹣3,B 表示的数为2x﹣5,C表示的数为5﹣x,则x=3;若将△ABC向右滚动,则点2016与点A重合.(填A.B.C)【分析】根据等边三角形的边长相等得出(5﹣x)﹣(2x﹣5)=2x﹣5﹣(x﹣3),求出x即可,再利用点2016对应的点与A的距离,进一步利用3次一循环的规律求得答案即可.【解答】解:∵△ABC为等边三角形,设A表示的数为x﹣3,B表示的数为2x ﹣5,C表示的数为5﹣x,∴(5﹣x)﹣(2x﹣5)=2x﹣5﹣(x﹣3),解得:x=3;∴点A是3﹣3=0原点,∵2016÷3=672,∴点2016与点A重合,故答案为:3,A.【点评】此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,将数与式的考查融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等是解题的关键.9.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点A1,第二次将点A1,向右移动4个单位长度到达点A2,第三次将点A2向左移动6个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离等于19,那么n的值是18或19.【分析】根据题意可以分别写出点A移动的规律,当点A奇数次移动后对应数的都是负数,偶数次移动对应的数都是正数,从而可知A n与原点的距离等于19分两种情况,从而可以解答本题.【解答】解:由题意可得,第奇数次移动的点表示的数是:1+(﹣2)×,第偶数次移动的点表示的数是:1+2×,∵点A n与原点的距离等于19,∴当点n为奇数时,则﹣19=1+(﹣2)×,解得,n=19;当点n为偶数,则19=1+2×解得n=18.故答案为:18或19.【点评】本题考查数轴,解题的关键是明确题意,可以分别写出点A奇数次和偶数次移动的关系式.10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处,依此即可求解.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为.故答案为:.【点评】考查了数轴,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.11.如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是m.【分析】由题意可得,q、m、n、p第一次在数轴上对应的点为﹣1、﹣2、﹣3、﹣4,然后再继续滚动将循环出现q、m、n、p,即四个一循环,从而可以推得﹣2014对应的字母,从而可以解答本题.【解答】解:∵由题意可得,q、m、n、p第一次在数轴上对应的点为﹣1、﹣2、﹣3、﹣4,即每四个为一个循环,∴2014÷4=503 (2)∴数轴上表示﹣2014的点与圆周上重合的点对应的字母是m.故答案为:m.【点评】本题考查数轴,解题的关键是找出题目中的规律,找出所求问题需要满足的条件.三.解答题(共4小题)12.如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示﹣1的点重合.(1)圆的周长为多少?(2)若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(3)若将数轴按照顺时针方向绕在该圆上,(如数轴上表示﹣2的点与点B重合,数轴上表示﹣3的点与点C重合…),那么数轴上表示﹣2018的点与圆周上哪个点重合?【分析】(1)利用圆的周长公式计算;(2)若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度;(3)此题需要寻找规律:每4个数一组,分别与0、3、2、1重合,所以需要计算2018÷4,看是第几组的第几个数.【解答】解:(1)圆的周长=2π•=4个单位长度;(2)若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度,此时与点A重合的点表示的数为:8﹣1=7;(3)由图可知,每4个数为一个循环组依次循环,∵2018÷4=504…2,∴表示﹣2018的点是第505个循环组的第2个数D重合.【点评】本题考查了实数与数轴,关键在于观察出每4个数为一个循环组依次循环,难点在于找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.13.阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q表示的数为﹣1,点P表示的数为0,点K表示的数为1,点R表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是有序点对[Q,R]的好点,但点K不是有序点对[R,Q]的好点.同理可以判断:点P有序点对[Q,R]的好点不是,点R有序点对[P,K]的好点是(填“是”或“不是”);(2)如图2,数轴上点M表示的数为﹣1,点N表示的数为5,若点X是有序点对[M,N]的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为﹣20,点B表示的数为10.现有一只电子蚂蚁C从点B出发,以每秒2个单位的速度向左运动t秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.【分析】(1)根据定义发现:好点表示的数到[Q,R]中,前面的点Q是到后面的数R的距离的2倍,从而得出结论;(2)点M到点N的距离为6,根据定义得:好点所表示的数为11;(3)由好点的定义可知:分两种情况列式:①当点C在点A、B之间;②当点A在点C、B之间;可以得出结论.【解答】解:(1)∵PQ=PR,RP=2RK,∴点P不是有序点对[Q,R]的好点,点R是有序点对[P,K]的好点.故答案是:不是,是;(2)当点X在点M、N之间,由MN=5﹣(﹣1)=6,XM=2XN,所以XM=4,XN=2,即点X距离点M为4个单位,距离点N为2个单位,即点X 所表示的数为3,当点X在点N的右边,由MN=5﹣(﹣1)=6,XM=2XN,所以XM=12,XN=6,即点X距离点M为12个单位,距离点N为6个单位,即点X所表示的数为11;(3)AB=10﹣(﹣20)=30,当点C在点A、B之间,①若点C为有序点对[A,B]的好点,则CA=2CB,CB=10,t=5(秒).②若点C为有序点对[B,A]的好点,即CB=2CA,CB=20,t=10(秒).③若点B为有序点对[A,C]的好点或点A为有序点对[B,C]的好点,即BA=2BC或AB=2AC,CB=15,t=7.5(秒),当点A在点C、B之间,④点A为有序点对[B,C]的好点,即AB=2AC,CB=45,t=22.5(秒).②点C为有序点对[B,A]的好点或点B为有序点对[C,A]的好点,即CB=2CA或BC=2BA,CB=60,t=30(秒);③点A为有序点对[C,B]的好点,即AC=2AB,CB=90,t=45.∴当经过5秒或7.5或10秒或22.5秒或30秒或45秒时,A、B、C中恰有一个点为其余两有序点对的好点.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义:好点表示的数是与前面的点A的距离是到后面的数B的距离的2倍,列式可得结果.14.如图:已知A、B、C是数轴(O是原点)上的三点,点C表示的数是6,线段BC=4,线段AB=12.(1)写出数轴上A、B两点表示的数.(2)动点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,t为何值时,原点O是线段PQ的中点?【分析】(1)根据数轴上两点间的距离可得点A、点B所表示的数;(2)若点O是点P与点Q的中点时,P、Q所表示的数互为相反数,列方程求解即可.【解答】解:(1)∵点C表示的数是6,BC=4,AB=12,且点A、点B在点C左边,∴点B表示的数为:6﹣4=2,点A表示的数为:6﹣4﹣12=﹣10,即数轴上A点表示的数为﹣10,数轴上B点表示的数为2;(2)若点O是点P与点Q的中点,则﹣10+2t+6﹣t=0,解得:t=4.故t为4时,原点O是线段PQ的中点.【点评】本题考查了一元一次方程的应用和数轴,解题关键是根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是[C,D] 的2倍点,点B是[D,C] 的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是2或10;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q 出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)【分析】(1)根据图形可直接解得;(2)∵NM=4﹣(﹣2)=6 分点E在M,N之间,和N点右侧,又∵点E 是[M,N]的2倍点∴EM=4或12∴点E 表示的数是2或10;(3)点H 恰好是P和Q 两点的2倍点可分为三种情况而定,解得t有3个值.【解答】解:(1)∵CA=2,DA=1,CA=2DA∴点A 是[C,D]的2倍点∵BD=2,BC=1,BD=2BC∴点B是[D,C]的2倍点.故答案为:[C,D][D,C](2)∵NM=4﹣(﹣2)=6当点E在线段MN上又∵点E是[M,N]的2倍点∴EM=MN=4∴点E 表示的数是2当点E在点N右侧∴EM=2NE∴MN=NE=6∴ME=12∴点E表示的数是10.故答案为:2或10;(3 )∵PQ=m,PH=2t,∴HQ=m﹣2t又∵点H 恰好是P和Q两点的2倍点∴点H是[P,Q]的2倍点或点H是[Q,P]的2倍点∴PH=2HQ 或HQ=2PH即:2×2t=m﹣2t或2t=2(m﹣2t)或2t=2(2t﹣m),解得t=m或t=m或t=m所以,当t=m或t=m或t=m时,点H恰好是P和Q两点的2倍点.【点评】此题主要考查了对2倍点的理解和认识,解本题的关键是分清2倍点的两种不同的情况.。
华东师大版七年级数学上册第二章 2.2.1 数轴同步测试题一、选择题1.关于数轴,下列说法最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.在下图中,表示数轴正确的是()A BC D3.如图,数轴上点A表示的数是()A.-1 B.0 C.1 D.2 4.如图,数轴上蝴蝶所在点表示的数可能为()A.3 B.2 C.1 D.-1 5.数轴上的点A在原点的左侧,且距原点2个单位长度,则点A表示的数为( ) A.-4 B.-2 C.2 D.4 6.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有() A.0个B.1个C.2个D.3个7.数轴上原点及原点左边的点表示( )A .正数B .负数C .非正数D .非负数8.如图,数轴上表示a ,b ,c 三个有理数的点分别是A ,B ,C ,则下列结论中正确的是(A )A .a ,b ,c 三个数中有两个正数,一个负数B .a ,b ,c 三个数中有两个负数,一个正数C .a ,b ,c 三个数都是正数D .a ,b ,c 三个数都是负数9.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A .0B .1C .2D .310.在数轴上点A 表示-4,如果把原点向负方向移动1个单位长度,那么在新数轴上点A 表示的数是( )A .-2B .-3C .-4D .-5二、填空题11.在数轴上与原点距离2.5个单位长度的点所表示的有理数是______.12.数轴上表示-122与223的两点之间表示整数的点有______个.13.数轴上原点及原点左边的点表示______. 三、解答题14.如图,指出数轴上的点A ,B ,C 所表示的数,并把-4,32,5这三个数分别用点D ,E ,F在数轴上表示出来.15.邮递员从邮局出发,先向西骑行3 km到达A村,继续向西骑行2 km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1 km为1个单位长度的数轴上表示出A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共行驶了多少千米?16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是______;②从-2到2有5个整数,分别是______;③从-3到3有7个整数,分别是______;④从-200到200有______个整数;(2)根据以上规律,直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为2 020厘米的线段AB,则线段AB 盖住的整数点有______个.参考答案一、选择题1.关于数轴,下列说法最准确的是(D)A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.在下图中,表示数轴正确的是(A)A BC D3.如图,数轴上点A表示的数是(C)A.-1 B.0 C.1 D.2 4.如图,数轴上蝴蝶所在点表示的数可能为(D)A.3 B.2 C.1 D.-15.数轴上的点A在原点的左侧,且距原点2个单位长度,则点A表示的数为(B) A.-4 B.-2 C.2 D.46.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有(C)A.0个B.1个C.2个D.3个7.数轴上原点及原点左边的点表示(C)A.正数B.负数C.非正数D.非负数8.如图,数轴上表示a,b,c三个有理数的点分别是A,B,C,则下列结论中正确的是(A)A.a,b,c三个数中有两个正数,一个负数B.a,b,c三个数中有两个负数,一个正数C.a,b,c三个数都是正数D.a,b,c三个数都是负数9.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是(D)A.0 B.1 C.2 D.310.在数轴上点A表示-4,如果把原点向负方向移动1个单位长度,那么在新数轴上点A 表示的数是(B)A.-2 B.-3 C.-4 D.-5二、填空题11.在数轴上与原点距离2.5个单位长度的点所表示的有理数是±2.5.12.数轴上表示-122与223的两点之间表示整数的点有5个.13.数轴上原点及原点左边的点表示非正数. 三、解答题14.如图,指出数轴上的点A ,B ,C 所表示的数,并把-4,32,5这三个数分别用点D ,E ,F 在数轴上表示出来.解:点A ,B ,C 所表示的数分别是-2.5,0,4;-4,32,5这三个数分别用点D ,E ,F 在数轴上表示如图所示.15.邮递员从邮局出发,先向西骑行3 km 到达A 村,继续向西骑行2 km 到达B 村,然后向东骑行9 km 到达C 村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1 km 为1个单位长度的数轴上表示出A ,B ,C 三个村庄的位置;(2)C 村离A 村有多远?(3)邮递员一共行驶了多少千米?解:(1)如图所示.(2)C 村离A 村的距离为4+3=7(km ). (3)邮递员一共行驶了3+2+9+4=18(km ). 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;②从-2到2有5个整数,分别是-2,-1,0,1,2;③从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;④从-200到200有401个整数;(2)根据以上规律,直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为2 020厘米的线段AB,则线段AB 盖住的整数点有2020或2021个.。
2.2数轴一、填空题1.数a、b在数轴上对应点的位置如图所示.则a_______b(填“>”、“<”或“=”).2.用“>”或“<”填空:(1)-2_______0;(2)-3_______-3.5;(3)3_______-5.5;(4)-2_______2.3.请写出一个比225小的整数_______.4.给出下列各数:2,-3,-213,3.5,0,-4.6,其中最小的有理数为_______;最大的有理数为_______.5.大于-2而不超过3的所有整数是_______.二、选择题6.(2010.淄博)下列四个数中最小的是( )A.-10 B.-1 C.0 D.0.1 7.(2010.连云港)下面四个数中比-2小的数是( )A.l B.0 C.-1 D.-38.将下面三个数-0.1,0,0.01从大到小用“>”连接,正确的是( ) A.-0.1>0>0. 01 B.-0.1>0>0. 01C.0.01>0>-0.1 D.0.01>-0.1>09.据中央气象台2011年1月28日的预报,我国某三个城市的最高气温分别是-10℃,1 ℃,-2℃,把它们从高到低排列正确的是( )A.-10℃,-2℃,1℃B.-2℃,-10℃,1℃C.1℃,-2℃,-10℃D.1℃,-10℃,-2℃10.(2010.浙江)如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是( )A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<1三、解答题11.在数轴上画出表示下列各数的点,并用“<”将它们连起来.1.5,-2,0,3,-312.12.下表记录了某日我国几个城市的最低气温:请将各城市的最低气温按由低到高的次序排列.13.写出符合条件的数,并将它们在数轴上表示出来.(1)大于-5而不大于-1的负整数;(2)大于-112的非正整数.14.观察数轴,能否找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的正数和最小的正数;(4)最小的正分数和最大的负分数.15.如图,在数轴上有三个点A、B、C,请回答:(1)将点B向左移动3个单位后,三个点所表示的数谁最小?(2)将点A向右移动4个单位后,三个点所表示的数谁最小?(3)将C点向左移动6个单位后,这时B点所表示的数比C点表示的数大多少?(4)怎样移动A、B、C中的两个点,才能使三个点表示的数相同?有几种移动的方法?。
2.2 数轴一、单选题1.-2、0、1、-3四个数中,最小的数是()A. -2B. 0C. 1D. -32.下列有理数的大小比较,正确的是( ).A. B. C. D.3.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是()A. 0B. 2C. 1D. –14.下列各数中,比﹣2小的数是()A. ﹣3B. ﹣1C. 0D. 15.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向南走了70米,此时张明的位置在()A. 在家B. 在学校C. 在书店D. 不在上述地方6.下列各组数大小比较,错误的是()A. 26>15B. -12<-8C.D. -1<67.下列四个数中,在﹣2和﹣1之间的是()A. -B. -C. -D. -8.有理数a,b在数轴上的位置如图所示,那么下列式子中成立的是()A. ab>0B.C. a﹣1>0D. a<b9.在数轴上点A、B对应的数为a、b,则a+b+3的和为()A. 正数B. 负数C. 0D. 不确定二、填空题10.比较大小:﹣________﹣11.数轴上表示数-3和2之间的所有整数(包括-3和2两个数)的和等于.12.在数轴上,若A点表示数x,点B表示数﹣5,A、B两点之间的距离为7,则x= ________13.如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是________.14.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第一次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数是________,如果点A n与原点的距离不小于20,那么n的最小值是________.三、解答题15.某次考试六名同学成绩与平均分的差值为5、1 、﹣4、3 、﹣5、0,请在数轴上画出表示各数的点,并用“<”号把它们连接起来.参考答案一、单选题1.D2.D3.C4.A5. B6. C7.C8.D9.A二、填空题10.>11. -312.﹣12或213.14.7;13三、解答题15.解:如图所示:故﹣5<﹣4<0<1 <3 <5。
专练10 数轴动点问题(10题)1.(2020·四川阿坝藏族羌族自治州·七年级期末)如图:在数轴上A 点表示数,a B 点示数,b C 点表示数,c b 是最大的负整数,A 在B 左边两个单位长度处,C 在B 右边5个单位处()1a = ;b = _;c = _;若将数轴折叠,使得A 点与C 点重合,则点B 与数_ __表示的点重合;()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为,AB 点A 与点C 之间的距离表示为,AC 点B 与点C 之间的距离表示为BC ,则AB =_ _,AC =_ _,BC =__ _;(用含t 的代数式表示)()4请问:52BC AB -的值是否随着时间t 的变化而改变﹖若变化,请说明理由;若不变,请求其值.【答案】(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.(1)b 是最大的负整数,1b =-A 在B 左边两个单位长度处,C 在B 右边5个单位处3a =-,c 4=(2)将数轴折叠,使得A 点与C 点重合()3412a c b +-=-+--=(3)点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动t 秒钟过后,根据s vt =得:s 2A t =,s 3B t =,s 5C t =又3a =-,1b =-,c 4=点A 表示的数为,点B 表示的数为31t -,点C 表示的数为54t +,25AB t =+,77AC t =+,2+5BC t =;(4)由(3)可知:25AB t =+,2+5BC t =52BC AB 的值为定值21.故答案为:(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【点睛】本题考查了数轴及两点间的距离,根据点运动的方向和速度找出点A 、B 、C 运动后代表的数是解题的关键.2.(2020·安徽六安市·七年级期末)如图,数轴的单位长度为1,点,A D 表示的数互为相反数.(1)直接写出:点B 表示的数是_____,点C 表示的数是_____.(2)如果数轴上点P 到点,B C 的距离和等于5,则点P 表示的数是 .(3)数轴上动点M 从点B 出发以每秒1个单位长度的速度向左运动,同时另一动点N 从点C 出发以每秒2个单位长度的速度也向左运动.运动x 秒后,M N 两点间的距离为1,求出x 的值.【答案】(1)-1,2;(2)或3;(3)2或4解:(1)∵点A ,D 表示的数互为相反数,∴数轴的原点位于点B 右侧一个单位,∴点B 表示的数是−1,点C 表示的数是2,故答案为:−1;2.(2)设点P 表示的数为x ,∵点B ,C 的距离为3,∴若点P 到点B ,C 的距离和等于5,则点P 可能位于点B 左侧或者位于点C 右侧,∴当点P 位于点B 左侧时,|x−(−1)|+|x−2|=−1−x +2−x=1−2x=5∴x =−2当点P 位于点C 右侧时,|x−(−1)|+|x−2|=x +1+x−2=2x−1=5∴x =3故答案为:−2或3.(3)由题意得:|(2−2x )−(−1−x )|=1∴|3−x|=1∴3−x =1或3−x =−1∴x =2或x =4即x 的值为2或4.【点睛】本题考查了数轴上的动点问题、绝对值方程的列式及求解,会正确地根据数轴表示相关线段长,明确相关点在数轴上如何表示,是解题的关键.3.(2019·吉林七年级期末)如图,已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且a ,b 满足()220400a b ++-=.(1)求点A 与点B 在数轴上对应的数a 和b ;(2)现动点P 从点A 出发,沿数轴向右以每秒4个单位长度的速度运动;同时,动点Q 从点B 出发,沿数轴向左以每秒2个单位长度的速度运动,设点P 的运动时间为t 秒.① 若点P 和点Q 相遇于点C , 求点C 在数轴上表示的数;② 当点P 和点Q 相距15个单位长度时,直接写出t 的值.【答案】(1)20a =-,40b =;(2)①20; ②7.5t =或12.5秒解:(1)由题意中绝对值和偶次方的非负性知, 200a +=且 400b -=.解得20a =-,40b =.故答案为:20a =-,40b =.(2)① P 点向右运动,其运动的路程为4t ,t 秒后其表示的数为:,Q 点向左运动,其运动的路程为2t ,t 秒后其表示的数为:402-t ,由于P 和Q 在t 秒后相遇,故t 秒后其表示的是同一个数,∴204402t t -+=-解得 10t =.∴此时C 在数轴上表示的数为:2041020-+⨯=.故答案为:20.② 情况一:当P 和Q 未相遇时相距15个单位,设所用的时间为1t故此时有:114+21540(20)+=--t t解得17.5=t 秒情况二:当P 和Q 相遇后相距15个单位,设所用的时间为2t故此时有:224+21540(20)-=--t t解得212.5=t 秒.故答案为:7.5t =或12.5秒【点睛】本题考查了一元一次方程的应用、两点间的距离、数轴、绝对值以及偶次方的非负性,根据两点间的距离结合线段间的关系列出一元一次方程是解题的关键.4.(2020·陕西西安市·七年级期末)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.【答案】(1),85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.(1),85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点AB 、两点之间运动时:;②当点P 运动到点B 的左侧时,;线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.5.(2020·浙江杭州市·七年级期末)如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.(1)请写出与A 、B 两点距离相等的点M 所对应的数;(2)若当电子蚂蚁P 从B 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D 点对应的数是多少吗?(3)现有一只电子蚂蚁P 从B 点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上相距10单位时电子蚂蚁Q 刚好在C 点,你知道C 点对应的数是多少吗?【答案】(1)40;(2)-260;(3)24或32.(1)根据题意可知,点M为A、B的中点,∴(-20+100)÷2=40,答:点M对应的数为40,故答案为:40;(2)点P追到Q点的时间为120÷(6-4)=60,即此时Q点经过的路程为4×60=240,即-20-240=-260,答:点D对应的数是-260,故答案为:-260;(3)分相遇前和相遇后两种情况讨论:他们相遇前相距10单位时,(120-10)÷(6+4)=11,及相同时间Q点运动路程为:11×4=44,即-20+44=24;他们相遇后相距10单位时,(120+10)÷(6+4)=13,及相同时间Q点运动路程为:13×4=52,即-20+52=32,答:点C对应的数是24或32,故答案为:24或32.【点睛】本题考查了数轴上的动点问题,相遇和追及问题,有理数的运算,掌握数轴上的动点问题是解题的关键.M N对应的数分别为1 ,3,点P为数轴上任意一6.(2020·浙江杭州市·七年级期末)已知数轴上三点,点,其对应的数为x。
2.2数轴◆随堂检测1.判断题(1)直线就是数轴()(2)数轴是直线()(3)任何一个有理数都可以用数轴上的点来表示()(4)数轴上到原点距离等于3的点所表示的数是+3()(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.()2.画一条数轴,并画出表示下列各数的点-5,0,+3.2,-1.43.在下图中,表示数轴正确的是().4.思考题:①在数轴上距原点3个单位长度的点表示的数是_____________②在数轴上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.5.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};◆典例分析在数轴上,点A表示-1,与点A相距3个单位长度的点B所表示的数为___________解析:造成错解的原因是只考虑了点A右侧的情况,没考虑左侧,点B 的位置有两种可能,在A 点左侧相距3个单位长度的点是-4,在右侧相距3个单位长度的点是2.◆课下作业●拓展提高1.下列说法错误的是( )A、最小自然数是0B、最大的负整数是-1C、没有最小的负数D、最小的整数是02.在数轴上,原点左边的点表示的数是( )A、正数B、负数C、非正数D、非负数3.有一只小蚂蚁以每秒2个单位长度的速度从数轴上-4的点A出发向右爬行3秒到达B点,则B点表示的数是()A、2B、-4C、6D、-64.数轴的三要素是指、、5. 文具店、书店和玩具店依次座落在一条南北走向的大街上,•文具店在书店北边20m处,玩具店位于书店南边100m处.小明从书店沿街向南走了40m,•接着又向南走了-60m,此时小明的位置在 .6.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2019厘米的线段AB,则线段AB盖住的整点的个数是 .7.(1)在数轴上表示出下列各有理数:-2,-312,0,3,12;(2)指出图所示的数轴上A、B、C、D、E各点分别表示的有理数.●体验中考1、(2019年贵阳)点A在数轴上距原点为3个单位,且位于原点左侧,若将A向右移动4个单位,再向左移动1个单位,这时A点表示的数是_________________;2、(2019年广州)所有大于-3的负整数是______________,所有小于4的非负整数是________________。
2.2 数轴一、单选题1.-2、0、1、-3四个数中,最小的数是()A. -2B. 0C. 1D. -32.下列有理数的大小比较,正确的是( ).A. B. C. D.3.一个点从数轴上表示–2的点开始,向右移动7个单位长度,再向左移动4个单位长度,则此时这个点表示的数是()A. 0B. 2C. 1D. –14.下列各数中,比﹣2小的数是()A. ﹣3B. ﹣1C. 0D. 15.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向南走了70米,此时张明的位置在()A. 在家B. 在学校C. 在书店D. 不在上述地方6.下列各组数大小比较,错误的是()A. 26>15B. -12<-8C.D. -1<67.下列四个数中,在﹣2和﹣1之间的是()A. -B. -C. -D. -8.有理数a,b在数轴上的位置如图所示,那么下列式子中成立的是()A. ab>0B.C. a﹣1>0D. a<b9.在数轴上点A、B对应的数为a、b,则a+b+3的和为()A. 正数B. 负数C. 0D. 不确定二、填空题10.比较大小:﹣________﹣11.数轴上表示数-3和2之间的所有整数(包括-3和2两个数)的和等于.12.在数轴上,若A点表示数x,点B表示数﹣5,A、B两点之间的距离为7,则x= ________13.如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是________.14.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第一次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数是________,如果点A n与原点的距离不小于20,那么n的最小值是________.三、解答题15.某次考试六名同学成绩与平均分的差值为5、1 、﹣4、3 、﹣5、0,请在数轴上画出表示各数的点,并用“<”号把它们连接起来.参考答案一、单选题1.D2.D3.C4.A5. B6. C7.C8.D9.A二、填空题10.>11. -312.﹣12或213.14.7;13三、解答题15.解:如图所示:故﹣5<﹣4<0<1 <3 <5。
2020华师大数轴练习题
1.在数轴上, 一点从原点开始, 先向右移动2个单位, 再向左移动3个单位后到达终点, 终点表示的数是( ) .
A. 5
B. 1
C.-1
D.-5
2.下列一组数: 1, 4, 0, -2, -3在数轴上表示的点中, 不在原点右边的点的个数为( ) .
A. 2
B. 3
C. 4
D. 5
3.数轴上点A 表示-3, 点B 表示1, 则这两点间的点表示的有理数的个数为( ) .
A. 3
B. 2
C.有限个
D.无数个
4.已知数轴上的点A 到原点的距离是2, 那么在数轴上到点A 的距离是3的点所表示的数有( ) .
A. 1个
B. 2个
C. 3个
D. 4个
5、把数轴上表示2的点移动5个单位后,所得的对应点表示的数是( ) A .7 B .-3 C .7或-3 D .不能确定
6、点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 点时,点B 所表示的数是 ( )
A.1
B.-6 C.2或-6 D.不同于以上答案
7.如 图, 在 数 轴 上 点 A 表 示 的 数 可 能 是( )
A. 1. 5
B.-1. 5
C.-2. 6
D. 2. 6
8、下列图形中是数轴的是( )
9在数轴上表示数6的点在原点 侧,到原点的距离是 个单位长度,表示数-8的点在原点的 侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.
-1A 21543B -12
10C 2
10D
10、画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起来. -312
,4,2.5,0,1,7,-5.
11、如图:点A 、B 、C 为数轴上的三点、请回答下列问题: (1)将点A 向右平移3个单位长度后,哪个点表示的数最小; 12、
11、一个点从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是 。
(画数轴表示)
12、一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是 (画数轴表示)
7.判断下列所画的数轴是否正确,如不正确,请再画一个。
-10(1)0(2)-1(3)10(4)(5)(6)。