07_非线性弹性本构关系_2010_969806132
- 格式:pdf
- 大小:708.72 KB
- 文档页数:17
第二章材料本构关系§2.1本构关系的概念本构关系:应力与应变关系或内力与变形关系结构的力学分析,必须满足三类基本方程:(1)力学平衡方程:结构的整体或局部、静力荷载或动力荷载作用下的分析、精确分析或近似分析都必须满足;(2)变形协调方程:根据结构的变形特点、边界条件和计算精度等,可精确地或近似地满足;(3)本构关系:是连接平衡方程和变形协调方程的纽带,具体表达形式有:材料的应力-应变关系,截面的弯矩-曲率关系,轴力-变形(伸长、缩短)关系,扭矩-转角关系,等等。
所有结构(不同材料、不同结构形式和体系)的力学平衡方程和变形协调方程原则上相同、数学形式相近,但本构关系差别很大。
有弹性、弹塑性、与时间相关的粘弹性、粘塑性,与温度相关的热弹性、热塑性,考虑材料损伤的本构关系,考虑环境对材料耐久性影响的本构关系,等等。
正确、合理的本构关系是可靠的分析结果的必要条件。
混凝土结构非线性分析的复杂性在于:钢筋混凝土---复杂的本构关系:有限元法---结构非线性分析的工具:非线性全过程分析---解决目前结构分析与结构设计理论矛盾的途径:§2.2 一般材料本构关系分类1. 线弹性(a) 线性本构关系; (b) 非线性弹性本构关系图2-1 线弹性与非线性弹性本构关系比较在加载、卸载中,应力与应变呈线性关系:}]{[}{εσD = (图2-1a ) 适用于混凝土开裂前的应力-应变关系。
2. 非线性弹性在加载、卸载中,应力与应变呈非线性弹性关系。
即应力与应变有一一对应关系,卸载沿加载路径返回,没有残余变形(图2-1b )。
}{)]([}{εεσD = 或 }{)]([}{εσσD =适用于单调加载情况结构力学性能的模拟分析。
3. 弹塑性图2 – 2 弹塑性本构关系(a)典型弹塑性;(b)理想弹塑性;(c)线性强化;(d)刚塑性典型的钢筋拉伸应力、应变曲线 (图2-2(a ))包含弹性阶段(OA )、流动阶段(AB )及硬化阶段(BC )。
从力学角度本构关系
从力学角度来看,材料的本构关系是描述材料力学性能的物理方程或规律。
本构关系可以分为线性本构关系和非线性本构关系。
线性本构关系是指材料的应力与应变之间呈线性关系,即符合胡克定律。
根据胡克定律,应力与应变之间的关系可以用弹性模量或切变模量来描述,这些模量是材料特性的重要参数。
常见的线性本构关系包括弹性模型、弹塑性模型等。
非线性本构关系是指材料的应力与应变之间呈非线性关系,即在外力作用下,材料的变形不再是正比于应力。
非线性本构关系可以更准确地描述材料的行为,如塑性、黏弹性等。
常见的非线性本构关系包括塑性本构关系、粘弹性本构关系等。
无论是线性本构关系还是非线性本构关系,在力学角度上都可以通过实验或理论推导得到。
根据不同材料的力学性质,可以选择不同的本构关系模型来描述材料的行为,在工程应用中起到指导设计和预测材料性能的作用。