弹性力学第四章本构关系
- 格式:ppt
- 大小:808.50 KB
- 文档页数:51
本构关系1. 各向同性线性弹性本构方程及其中的物理常数G、λ、K 与E、μ的关系式;2. 球量和偏量的本构方程。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
一般情况下,材料的应力与应变呈某一函数关系,可表示为:当式中的自变量:x、y、z、yz、zx、xy为小量时,可对其按Taylor级数展开,并略去二阶以上小量,如第一式,有上式中(f 1)0表达了函数f 1在应变分量为零时的值,根据应力应变的一般关系式可知,它代表了初始应力。
而表示函数f1 对应变分量的一阶偏导数,在小变形条件下,它们均为常数,这样可得一线性方程组:上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个,但可以证明,只有21个常数独立。
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn是坐标x,y,z的函数。
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。
对于完全的各向异性弹性体,本构关系有21个弹性常数,对于具有一个弹性对称面的各向异性材料,本构各向具有13个弹性常数。
对于正交各向异性材料,弹性常数有9个。
正交各向异性材料的本构方程中,正应力仅与正应变有关,切应力仅与对应的切应变有关,因此拉压与剪切之间,以及不同平面内的剪切之间将不存在耦合作用。
1. 极端各向异性体的弹性常数为21个。
2.具有一个对称面的各向异性材料正交各向异性体:物体内的任一点存在三个弹性对称平面,在每一个对称平两侧对称方向上各自具有相同的弹性性质,这种物体称为正交各向异性体。
正交各向异性体的弹性常数为9个。
3.横观各向同性体若物体内的任一点在平行于某一平面的所各方向都具有相同的弹性性质,而垂直于该面的弹性性质不同,这种正交异性体称为横观各向同性体。
(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。
由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。
应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。
对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理⽅程或者本构关系。
对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。
分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。
本章的任务就是建⽴弹性变形阶段的应⼒应变关系。
⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。
同时,弹性体内部的能量也要相应的发⽣变化。
借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。
本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。
根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。
因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。