最新地质雷达使用讲义
- 格式:doc
- 大小:134.50 KB
- 文档页数:16
第六章探地雷达在隧道地质预报探水中的解释资料问题随着交通和能源建设的投资力度的加大,近年来,每年修建的公路和铁路隧道达7、8百公里,还有大量的水工隧洞和大型地下厂房及其它大型地下工程在修建。
地下工程是施工高风险的工程,施工中充满了未知数,许多已知的、不清楚的、未知的地质灾害源在等待者工程建设者们。
其中,施工中遇到突泥、突水是最危险的威胁,近几年,一些正在施工的隧道,特别是长隧道,施工时遇到突泥、突水,不仅大大延误工期,造成很大经济损失,而且有的隧道还造成多人的伤亡。
虽然近十余年来人们研究和使用一些物探方法在地下工程施工时作掌子面前方地质预报,但预报地下水仍是个困难的问题,以至成为业界要求作为首要要解决的问题。
探地雷达是目前隧道地质预报探水的最主要的手段,但是近几年的实践表明,其探查预报地下水的成功率不高。
经调查,资料解释的理论和实践未为大多数工作人员所了解和掌握是主要原因之一。
雷达是用发射天线向岩体发射有一定宽度的高频电磁波,岩体中的介质因介电常数ε的不同而反射雷达波被接收天线接收。
介电常数差是雷达工作的基础。
空气的介电常数为1。
岩石的介电常数为4~20,水的介电常数为81。
因而探地雷达对水有特别的敏感性。
同时,地下水往往为高电导介质,对雷达波的反应也与其它介质有区别。
本文将从理论依据和实际应用方面来探讨有关问题6.1 地下水对雷达波的反射波的特点6.1.1 雷达波通过含水体后,高频成分被吸收,反射波的优势频率降低电磁场由麦克斯韦方程来描述并包括电荷守衡方程以及场量与介质关系的本构方程。
无界均匀有耗介质中的电磁波的电场表达式为:E (r )= E 0 e -jkr其中,k = β-j α;α为衰减系数;β为相位系数。
若假设介质介电常数和电导率均为实数,则:α = ω {[1+(σe /με)2]1/2/2-1}1/2当σe /ωε<< 1,即电导率σe 很小时, α≈ σe [(μ/ε)1/2 ]/2衰减系数与σe 成正比,与ε1/2成反比;当 σe /ωε>> 1 ,即电导率σe 很大时,α≈ (σe ωμ/2)1/2衰减系数与σe 及频率f 成相关,频率高的成分衰减系数大;因此,雷达波通过含水体后,高频成分被吸收,含水层的反射波的优势频率降低 6.1.2 雷达波对水和含水率高的介质的反射强烈,反射波强度大1.在弱耗媒质中εr >>60λ0σ,则:α=ω(ε0μ)1/2(30λ0σ/εr )1/2入射波的电场:E i = E 0i e j ( ωt – kr); 反射波的电场:E r = E 0r e j ( ωt – kr)。
地质雷达数据处理解释系统使用说明书
嘿,朋友!今天咱就来好好唠唠这个地质雷达数据处理解释系统咋用。
你想想啊,这就好比你有了一个超级厉害的工具包,里面装满了各
种神奇的玩意儿,能帮你解开地下世界的秘密。
首先,你得把采集到的数据导进去,就像给这个系统喂饱饭一样。
比如说,你在野外辛苦采集了一堆地质雷达的数据,这就是系统的“粮食”呀!
然后呢,系统就开始大显身手啦!它会像个聪明的侦探一样,对这
些数据进行分析处理。
比如说,它能找出那些隐藏在数据里的异常点,就好像在一堆乱石中找到那颗闪闪发光的宝石一样。
“哎呀,这系统真能这么厉害?”你可能会问。
嘿,那当然啦!它的
本事可大着呢!它能把那些复杂的数据转化成直观的图像,让你一眼
就能看出地下的情况。
这就好比把一本深奥的天书变成了通俗易懂的
漫画。
在使用的过程中,你可得细心点儿,就像呵护宝贝一样对待它。
要
是不小心弄错了什么,那可就麻烦啦!
你看,这个地质雷达数据处理解释系统就是我们探索地下世界的得
力助手,有了它,我们就能更好地了解地下的奥秘。
所以啊,一定要好好利用这个系统,让它为我们的地质研究、工程建设等发挥出最大的作用。
别小瞧它,它可是个厉害的角色呢!
我的观点就是:地质雷达数据处理解释系统是非常实用且强大的,我们要熟练掌握它的使用方法,让它为我们的工作和研究带来更多的便利和成果。
第一章 前 言1.1应用范围地质雷达利用主频为数十兆赫至千兆赫波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。
由于地质雷达探测速度快、精度高,以及对原物体无破坏作用,所以在工程领域中有广泛的应用。
地质雷达目前已经广泛应用于如下方面: ● 探测松散堆积层与基岩界面 ● 探测地下水的水位线● 探测软弱破碎带(断层)的位置及规模● 对规模较大的裂隙及洞穴的位置和规模的确定● 坑道开挖掌子面前50米范围内的地质构造和地质灾害预测 ● 公路路基场坪地基混凝土结构质量检测 ● 各类地下管线探测 ● 地下埋设物探测 ● 防空洞位置探测 ● 超浅层地基探测● 隧道砼厚度与钢支撑密度施工质量检测 ● 地基注浆质量检测● 飞机场跑道、滑行道、停机坪病害及施工质量检测 ● 铁路路基与高速公路路基病害及施工质量检测 ● 地下及隐蔽工程水渗漏检测 ● 圈定人工填土范围与掩埋沟渠 ● 地基土壤污染圈定正是由于地质雷达有着很好的应用效果,从八十年代起,世界上许多国家都对它进行了不断的研究与开发。
随着电子技术和计算机技术的发展,这种研究开发仍在继续。
1.2 雷达探测的基本原理地质雷达是一种电磁探测技术。
静止的电荷分布或电流分布,激发稳定电场。
稳定电场不随时间变化,不向外辐射能量。
如果场源的电流随时间变化,就激发变化的电场,变化的电场在其周围激起变化的磁场,变化的磁场又要激起变化的电场,变化的电场和磁场由近及远地传播出去,形成电磁场。
在无源空间中,电磁场的发射、传播、反射、折射及绕射满足如下的麦克斯韦尔方程:(1–1)∇⨯=H D t ∂∂εμ=1V 0)()(22='+z E k dz z E d(1–2)(1–3)(1–4)其中:通过对式(1-1)和式(1-4)求解,可得:(1–5)(1–6)其中:从上两式中可以看出,该方程组具有波动方程的形式。
第一讲地质雷达的应用领域探地雷达(Ground Penetrating Radar,简称GPR),又称地质雷达,是近些年发展起来的高效的浅层地球物理探测新技术,它利用主频为数十兆赫至千兆赫兹波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。
与传统的地球物理方法相比,探地雷达最大的优点就是具有快速便捷、探测精度高以及对原物体无破坏作用。
因此,探地雷达在道路建设和公路质量检测领域已逐渐被认识到并广泛应用起来。
地质雷达自上世纪80年代中期开始应用至今将近20年了,其应用领域逐渐扩大,在考古、建筑、铁路、公路、水利、电力、采矿、航空各领域都有重要的应用,解决场地勘查、线路选择、工程质量检测、病害诊断、超前预报、地质构造等问题。
1.1 工程场地勘察地质雷达最早用于工程场地勘查,解决松散层厚度分布,基岩风化层分布,以及节理带断裂带等问题。
有时也用于研究地下水分布,普查地下溶洞、人工洞室等。
在粘土补发育的地区,探查深度可达20m以上,效果很好。
1.2 埋设物与考古探察考古是地质雷达应较早的领域,在欧洲有成功的实例,如意大利罗马遗址考古、中国长江三峡库区考古等项目都应用了雷达技术。
利用雷达探测古建筑基础、地下洞室、金属物品等。
在现今城市改造中,有时也需要了解地下管网,如电力管线、热力管线、上下水管线、输气管线、通信电缆等,这对于地质雷实是很容易的。
目前地质雷达为地下管线探测发展了高分辨3D探测系统及软件,如PATHFINDER雷达、R I S-2K/S等雷达都可以胜任这类工作,不但可探测到水平位置分布,还可以确定其深度,得到三维分布图。
雷达考古雷达探测管道1.3 工程质量检测工程检测近年应用领域急速扩大,特别是在中国的重要工程项目中,质量检测广泛采用雷达技术。
铁路公路隧道衬砌、高速公路路面、机场跑道等工程结构普遍采用地质雷达检测。
地质雷达培训课件下载地质雷达是一种用于地下勘探和探测的仪器,它通过发射电磁波并接收反射信号来获取地下结构的信息。
地质雷达在地质勘探、建筑工程、环境监测等领域有着广泛的应用。
为了提高地质雷达的应用效果,许多培训机构和科研机构都推出了相关的培训课件供人们学习和下载。
地质雷达培训课件是一种系统化的学习资料,它包含了地质雷达的原理、仪器的使用方法、数据处理技术等内容。
通过学习这些课件,人们可以系统地了解地质雷达的工作原理和应用方法,提高地质雷达的使用技能。
首先,地质雷达培训课件会介绍地质雷达的原理和工作机制。
地质雷达利用电磁波在地下的传播特性来获取地下结构的信息。
课件会详细介绍电磁波在地下的传播过程,以及地下不同介质对电磁波的反射和散射规律。
通过学习这些知识,人们可以了解地质雷达的工作原理,为后续的学习和应用打下基础。
其次,地质雷达培训课件会介绍地质雷达的使用方法和操作技巧。
地质雷达是一种高精度的仪器,正确的使用方法和操作技巧对于获取准确的地下信息至关重要。
课件会详细介绍地质雷达的仪器结构和操作步骤,以及在不同地质环境下的使用注意事项。
通过学习这些内容,人们可以掌握地质雷达的正确使用方法,提高勘探的准确性和效率。
此外,地质雷达培训课件还会介绍地质雷达数据的处理和解释技术。
地质雷达获取的数据需要进行处理和解释才能得到有用的地下信息。
课件会介绍地质雷达数据的处理方法,包括数据滤波、去噪、成像等技术。
同时,课件还会介绍地质雷达数据的解释方法,包括反射面识别、地下结构解析等技术。
通过学习这些内容,人们可以有效地处理和解释地质雷达数据,获取准确的地下结构信息。
最后,地质雷达培训课件还会介绍地质雷达在不同领域的应用案例。
地质雷达在地质勘探、建筑工程、环境监测等领域都有着广泛的应用。
课件会通过实际案例的介绍,展示地质雷达在不同领域的应用效果和成果。
通过学习这些案例,人们可以了解地质雷达的实际应用情况,为将来的工作和研究提供参考。
地质雷达基础知识地质雷达,听起来是不是很神秘?就像一个隐藏在地下世界的超级侦探,默默地探寻着大地的秘密。
咱们先说说这地质雷达是啥东西呢?简单来讲,它就像是给大地做体检的仪器。
你看啊,人要是生病了,医生会用各种仪器检查身体,什么X光啊,B超啊。
这大地虽然不会说话,但它里面也藏着好多事儿呢,地质雷达就是那个能看透大地内部的“医生”。
它通过发射电磁波,然后接收反射回来的信号,就像蝙蝠用超声波探路一样。
电磁波碰到不同的东西,反射回来的信号就不一样,这样就能知道地下到底有啥了。
那地质雷达能看到些啥呢?嘿,这可就多了去了。
比如说地下的空洞,就像咱们住的房子里有个隐藏的小密室一样。
有时候地下有溶洞或者是人为挖的地道,地质雷达就能发现。
还有地下的管道,就像人体里的血管一样,错综复杂。
自来水管道、煤气管道啥的,如果不知道位置了,地质雷达就能像个寻宝仪一样把它们找出来。
再讲讲这地质雷达的工作原理吧。
它发射出去的电磁波就像一群小信使,欢快地朝着地下跑去。
碰到石头了,一部分电磁波就被弹回来,就像你往墙上扔球,球会弹回来一样。
碰到水呢,反射的情况又不一样。
这些小信使带回的消息被地质雷达收集起来,经过一番分析,就能知道地下的结构啦。
这过程是不是很神奇?你难道不好奇它是怎么把这些消息变成我们能看懂的东西吗?其实啊,地质雷达也不是万能的。
它就像一个近视眼的侦探,有一定的探测范围和精度限制。
如果地下的东西太深了,或者周围的环境太复杂,就像在一个堆满杂物的大仓库里找一个小物件一样,它可能就有点吃力了。
不过呢,这并不影响它成为地质勘探领域的得力助手。
在实际使用地质雷达的时候,操作人员就像是指挥一场交响乐的指挥家。
要小心翼翼地控制着地质雷达的各种参数,让它发挥出最佳效果。
而且啊,不同的地质条件就像不同的音乐风格,得用不同的方法去应对。
在软土地质里,就像在棉花堆里找东西,和在硬岩石地质里找东西肯定不一样。
地质雷达在工程建设里也是大功臣呢。
探地雷达培训课件-(带目录)探地雷达培训课件一、引言探地雷达(GroundPenetratingRadar,简称GPR)是一种非破坏性探测技术,利用高频电磁波在地下的传播特性,对地下介质进行探测和成像。
它广泛应用于工程地质、考古、环境监测、资源勘探等领域。
本课件旨在介绍探地雷达的基本原理、系统组成、数据采集与处理方法,以及其在实际应用中的案例分析。
二、探地雷达的基本原理探地雷达利用电磁波在不同介质中传播速度的差异,以及地下目标体与周围介质电性参数的差异,实现对地下结构的探测。
电磁波在传播过程中,遇到不同电性参数的界面时,会发生反射和折射,通过接收这些反射波和折射波,可以获取地下目标体的信息。
三、探地雷达系统组成探地雷达系统主要由天线、发射接收单元、数据采集与处理单元等组成。
天线是探地雷达的关键部件,用于发射和接收电磁波。
发射接收单元负责产生高频电磁波,并将接收到的信号转换为数字信号。
数据采集与处理单元负责对采集到的数据进行实时处理,提取地下目标体的信息。
四、探地雷达数据采集与处理方法1.数据采集:在进行探地雷达数据采集时,需选择合适的探测参数,如天线频率、步长、扫描速度等。
同时,为提高探测效果,还需进行天线校准、背景噪声测试等操作。
2.数据处理:探地雷达数据处理主要包括预处理、滤波、反演等步骤。
预处理包括去除背景噪声、校正天线增益等;滤波用于压制干扰波,提高信号的信噪比;反演则是将雷达数据转换为地下目标体的图像。
五、探地雷达在实际应用中的案例分析1.工程地质领域:探地雷达可用于探测地下管线、空洞、岩溶等地质目标,为工程建设提供依据。
2.考古领域:探地雷达可用于探测地下遗址、墓葬、建筑遗迹等,为考古发掘提供线索。
3.环境监测领域:探地雷达可用于监测地下水位、污染范围等,为环境保护提供数据支持。
4.资源勘探领域:探地雷达可用于探测矿产资源、地下水等,为资源开发提供依据。
六、总结探地雷达作为一种高效、无损的地下探测技术,具有广泛的应用前景。
第一篇SIR—3000操作探讨1。
GSSI简介便携式透地雷达美国GSSI是目前世界上最好的生产地质雷达的厂家,它的产品遍布全球,目前超过1800套,占全球销量80%以上,在中国200余套,占中国市场份额的75%以上。
创始于1969年的美国地球物理探测公司(GSSI公司),是世界上第一家专业研制探地雷达的公司,其前身为美国宇航局.随着60年代末期美国宇航局专门为阿波罗计划所研制的专用仪器,成功地探测到月球表面尘埃之后,世界上第一台进入民用的商用探地雷达得以在美国推出,它就是美国GSSI公司生产的SIR系列探地雷达的前身。
它用电磁波为地质勘察服务,为勘察方法起到了革命性的推动作用。
注释:不要使用Windex或其它脱氨的玻璃清洁器来清洁显示屏,因为这会损坏涂层.只需使用一个清洁的、轻微潮湿的布来轻柔地擦洗屏幕。
位于该部件前部的电池槽接收10.8伏的锂离子可充电电池。
完全充电电池的测量时间近似为3小时。
电池是可以再充电的,方法是采用任选的电池充电器来充电,或通过简单地把电池留在该部件内,把该部件与标准交流源连接起来,然后把系统放在备用模式下进行。
给一个电池再充电的时间近似为4 到5小时。
务必保持电池槽遮盖在该部件上,在使用中保证没有灰尘或污垢进入该部件内部。
2.探测原理H=vf3.硬件连接在该部件的背部,SIR—3000有六个连接器和一个用于记忆卡的槽。
顶排五个连接器从左到右依次是:交流电源,串行输入/输出(RS232),以太网,USB—B,USB-A.注:如果你没有使用测量轮的话,用户标记对记录所通过的距离是有帮助的.对记录诸如圆柱,树,凹坑等障碍物的位置来说,用户标记也是有帮助的。
3。
启动和屏幕显示第一个是TerraSIRch。
用TerraSIRch模式可以对所有数据采集参数进行完全控制.QuickStart 引导是对每个其他模式都有用的.按TerraSIRch按钮.过一会儿,你将看到屏幕被分成了三个窗口,并且有一个条运行穿过屏幕底部,该条带有上面六个功能键的命令.按Mark 按钮将改变你要求的单位,从英制的到米制的。
地质雷达PPT课件contents •地质雷达基本原理•地质雷达探测方法•数据采集与处理•地质雷达在工程中的应用•地质雷达案例分析•地质雷达发展趋势与展望目录01地质雷达基本原理电磁波传播特性电磁波在介质中传播速度电磁波在不同介质中传播速度不同,其速度取决于介质的电磁特性。
电磁波衰减随着传播距离的增加,电磁波能量逐渐衰减,衰减程度与介质特性和频率有关。
电磁波的反射和折射当电磁波遇到不同介质的分界面时,会发生反射和折射现象,遵循斯涅尔定律。
地质雷达工作原理发射电磁波01接收反射波02信号处理与成像03发射系统接收系统控制系统数据处理与成像系统系统组成及功能02地质雷达探测方法测线布置天线频率选择数据采集与处理030201井中雷达系统采用专门设计的井中雷达系统,包括井下雷达主机、天线、电缆等。
测点布置与数据采集在井壁不同深度处布置测点,进行雷达数据采集。
数据处理与成像对采集的数据进行处理,提取井壁及周围地层的反射信号,并进行成像。
隧道超前预报法隧道掌子面前方预报数据处理与解译预报结果输出03数据采集与处理数据采集参数设置采样率设置天线频率选择确保采样率足够高,以捕获雷达波形的细节信息,通常建议采样率至少为天线频率的时窗设置消除直流偏移和低频背景噪声,提高数据质量。
背景去除应用带通滤波器,去除高频噪声和低频干扰,增强目标反射信号。
带通滤波根据信号强度动态调整增益,以平衡不同深度和不同反射体的信号幅度。
增益控制数据预处理与滤波1 2 3雷达图像生成地层解释异常识别图像生成与解释04地质雷达在工程中的应用地质构造解析岩土层划分不良地质现象识别混凝土质量检测钢筋分布与保护层厚度检测路基路面质量检测边坡稳定性监测隧道安全监测地下管线安全监测利用地质雷达对边坡内部的结构和变形进行实时监测,预警潜在滑坡风险。
05地质雷达案例分析介绍隧道的地理位置、设计参数、施工方法等背景信息。
工程背景地质条件超前预报方案预报结果分析分析隧道所处区域的地质构造、地层岩性、水文地质等条件。
地质调查行业中的地质雷达勘探技术使用技巧地质雷达勘探技术是一种非侵入性的高效地质调查技术,其在地质调查行业中得到广泛应用。
本文将介绍地质雷达勘探技术的基本原理,以及在实际应用中的使用技巧。
一、地质雷达勘探技术的基本原理地质雷达勘探技术是利用电磁波与地下介质之间的相互作用来获取地下信息的一种方法。
其基本原理是:通过向地下发送高频电磁波,然后接收地下反射回来的电磁波信号,通过分析信号的强度、时间和频率等特征来确定地下物质的性质和分布。
二、选择适当的频率和天线在使用地质雷达勘探技术之前,我们需要根据具体的勘探目的和地质背景选择适当的频率和天线。
不同的频率和天线对地下介质的穿透能力和分辨率有不同的影响。
对于需要较高的分辨率和浅层勘探的情况,通常选择高频率的地质雷达和短距离的天线;对于需要较好的穿透能力和深部勘探的情况,通常选择低频率的地质雷达和长距离的天线。
三、数据采集和处理技巧在进行地质雷达勘探时,数据的采集和处理是非常重要的环节。
以下是一些使用技巧:1. 采集时保持稳定:在采集数据时应尽量保持雷达的稳定,避免晃动以及不必要的震动,以确保数据的准确性和可靠性。
2. 采集时密集布点:为了获取较为真实、完整的地下信息,应将采集点尽量密集布置,特别是在需要较高分辨率的勘探情况下。
3. 合理选择采集方向:根据具体勘探的目标和需求,合理选择雷达数据的采集方向,以获取最优质的数据。
4. 数据处理:在数据采集完成后,需要对采集到的数据进行处理。
数据处理包括数据去噪、纠偏、反褶积等,以提高数据的质量和可解释性。
四、应用技巧地质雷达勘探技术在地质调查行业中有广泛的应用,以下是一些应用技巧:1. 地下管线勘探:地质雷达勘探技术可用于地下管线勘探,可以帮助准确定位地下管线的位置、深度和走向,提高勘探效率和安全性。
2. 地下水资源勘探:地质雷达勘探技术可以用于地下水资源的勘探,通过分析地下水对电磁波的响应,可以识别地下水的含量、分布和运动方向。
精品资料地质雷达使用讲义........................................摘要: 针对铁路隧道施工中可能出现的质量问题,利用地质雷达技术进行隧道工程质量检测。
针对铁路隧道,给出地质雷达在无损检测应用中的工作方法,包括测线布置、采集参数设定、现场检测和后期资料处理解释。
通过对现场数据处理分析,可以精确探测衬砌厚度,确定钢筋及格栅钢架的分布位置及数量,查明衬砌背后特别是拱顶存在的空洞和回填不密实区域。
使用地质雷达对隧道混凝土衬砌结构进行检测,实践证明技术方法是切实可行的前言地质雷达法以其无损性、高效率、高分辨率等优点,正逐渐成为地下隐蔽工程调查的一种有力工具,现已广泛应用于工程地质勘察、建筑结构调查、无损检测、水文地质调查、生态环境等众多领域。
随着交通事业的发展,隧道的大量建设,隧道病害也屡见不鲜。
应用地质雷达检测隧道衬砌,在铁路、公路部门中已经普遍展开。
应用地质雷达进行隧道衬砌检测已有很多研究。
检测内容主要包括:隧道衬砌的厚度、隧道衬砌背后回填物的密实状态、隧道衬砌背后与围岩的脱空区域、围岩的状态及其地下水向隧道侵入的通路等方面。
由于高频电磁波在介质中的高衰减性,使得该方法的应用受到一定的限制。
地质雷达的检测效果不仅与地质雷达本身的技术,还与较多影响因素相关,因而使得实际工程中很多检测效果并没有达到预期的目的。
因此,有必要分析影响应用地质雷达技术检测效果的主要因素,解决地质雷达在隧道检测中的有关技术问题,以便进一步提高检测水平。
1.地质雷达检测隧道衬砌目的隧道衬砌的质量检测主要包括:①隧道衬砌厚度,②隧道衬砌背后未回填的空区,③复合式衬砌中两层衬砌间较大的空段,④施工时坍方位置及坍方的处理情况,⑤衬砌混凝土回填密实度。
有时还可检测围岩中地下水向隧道侵入的位置。
近几年来采用探地雷达来做主要检测手段的越来越多。
这是由于与其它方法相比,作为沿测线作扫描检测的探地雷达工作效率较高。
用探地雷达在全隧道喷锚初期支护完成后作一次全面检测也是必要的,也应当进一步推广使用以提高喷射混凝土质量。
衬砌混凝土强度的现场检测,目前常采用回弹仪法、超声+回弹法、瑞利面波波速法等。
2.隧道衬砌质量的检测原理与探空或通讯雷达技术相类似,探地雷达也是利用高频电磁脉冲波的反射探测目的体及地质现象的,只是它是从地面向地下发射电磁波来实现.探测的,故亦称之为地质雷达。
探地雷达是通过天线将脉冲雷达波发射入被测物体,由接收天线接收不同物理性质物体的界面反射的雷达波,据此进行探查。
实测时将探地雷达的发射和接收天线密贴于衬砌表面,雷达波通过天线进入混凝土衬砌中,遇到钢筋、钢质拱架、材质有差别的混凝土、混凝土中间的不连续面、混凝土与空气分界面、混凝土与岩石分界面、岩石中的裂面等产生反射,接收天线接收到反射波,测出反射波的入射、反射双向走时,就可计算出反射波走过的路程长度,从而求出天线距反射面的距离D (图1)。
图1 雷达探测原理示意图D=V·△t/2式中: D 为天线到反射面的距离;Δt 为雷达波从发射至接收到反射波的走时,用ns (纳秒计),1 ns=10-9秒;V 为雷达波的行走速度,可以用几何光学的概念来看待直线传播的雷达波的透射和反射。
V=C0/ε1/2其中,C0为雷达波在空气中的传播速度─30cm/ns;ε为介电常数,由波所通过的物质决定。
即物体中的雷达波速由其介电常数决定。
如空气的ε=1,水的ε=80,混凝土的ε在6~14之间。
实际上,雷达波之所以会在物体界面产生反射,是因为界面两侧物质介电常数不同。
雷达天线可沿所测测线连续滑动,所测的每个测点的时间曲线可以汇成时间剖面图像。
从一个测点的反射波时间曲线上去判别哪一个波反映什么是困难的,但多个测点资料汇成的时间剖面,各测点接收到的同一反射面的反射波汇成一定图像,就能直观地反映出各种不同的反射面。
例如,一个与测量平面近于平行的反射面,如衬砌的外缘面,在时间剖面上就是与时间0基线近于平行的线;衬砌与岩体交界面的起伏(反映了衬砌厚薄变化)表现为有起伏的图像;钢质拱架的反射图像可能是一双曲线,在彩色或黑白灰度的图上也可能呈现一个个圆点;突入衬砌中的小块岩石、衬砌背后的空洞、两层衬砌间的空隙则多呈双曲线图像。
根据这些图像即可辩别不同的物体。
时间剖面图像是探地雷达成果的基本图件,其横座标为测点位置,纵座标为雷达波反射时。
可以用黑白波型图像(波形图变面积黑白显示)、黑白灰度显示、彩色色块显示等形式制图。
3.检测工作方法技术每座隧道沿隧道拱部轴向检测5条测线:拱顶、左拱腰和右拱腰、以及左边墙和右边墙。
可选用的雷达有多种,根据需要探测的深度来选定天线的频率。
频率高的天线发射雷达波主频高、分辨率高,但探测深度浅;频率低的天线发射雷达波主频低、分辨率低,但是探测深度大。
若选用450~500MHz的工作天线,它的波长约为20~30cm,检测厚于20~30cm的衬砌厚度有足够的分辨率,并可达到2cm左右的探测精度,可探测约2.5m深,适合检测复合衬砌和隧道仰拱;为探测深于3~5m的坍方情况,则需改用100~200MHz天线;对于采用地质雷达发做隧道超前预报则适宜使用更低频率的天线。
雷达检测时,需将发射和接收天线与隧道衬砌表面密贴,沿测线滑动,由雷达仪主机高速发射雷达脉冲,进行快速连续采集。
为此,需使用工作台架,便于将天线举起密贴衬砌。
为保持工效,天线沿测线以5km/h 左右的速度滑动。
为此,在卡车车厢上或铁路平板车上用钢管搭架并铺木板制成工作平台。
雷达每秒发射20~30个脉冲,若检测时天线的行走速度为1m/s(3.6km/h),则每米有测点20~30个;若天线的行走速度为1.5m/s(5.4km/h),则每米测线有测点15~22个。
雷达时间剖面上各测点的位置要和隧道里程相联系。
为保证点位的准确,在隧道壁上每5m或10m作一标志,标上里程。
当天线对齐某一标记时,由仪器操作员向仪器输入信号,在雷达记录中每5m或10m作一里程标记。
内业整理资料时,根据标记和记录的首、末标及工作中间核查的里程,在雷达的时间剖面图上标明里程。
图4 在在建隧道中用铺设防水板的全断面工作台架作检测(用装载机牵引)4.探地雷达的资料处理与解释4.1 资料处理和编录整理以及设计资料的汇集现场采集的数据要经过滤波、去噪、均衡等处理,打印成时间剖面图。
时间剖面图是用来作判释和计算的基本图件,需要精心制作。
1km的测线,图纸连接起来约有15~20m长,打印这些图纸的时间往往要长于现场采集的时间。
为了使图纸的计算与实际里程相符,必须在图纸上标注里程及5或10m的间隔标记,并要将一些特殊情况,如电气化线路隧道中的锚节点位置、隧道中的变截面位置、灯或通风机位置等标于图上。
对隧道衬砌质量作检测和评价,还必须掌握该隧道的设计情况,如围岩分类、设计参数、施工方法和步骤等,特别是长隧道,地质复杂,设计参数变化多,有时还由不同单位分段施工,掌握这些资料,对探查资料判释和隧道质量评价很有必要。
而熟悉和掌握这些资料和情况又需要检测人员下工夫去研究。
4.2 资料处理及判释:4.2.1处理步骤:图5 数据处理与解释流程图4.2.2 检测若采用波形黑白灰度显示形式打印雷达时间剖面图,资料判释时应在计算机屏幕上调出彩色时间剖面图作对比。
从图件标记起每一步骤均需200%复核、检查,实际上从制成时间剖面图起需经历约10道工序,每道工序均需仔细地研究时间剖面图,打印时间剖面图受打印机打印速度限制,资料处理及判释与现场准备及采集时间比约为4:1到5:1。
4.2.3 介电常数()的确定我检测中心检测介电常数的确定常采用反演法,即由公式计算。
其中C为光速(C=0.3m/ns),△t双程旅时(ns),D是已知厚度值(m)。
通过对已知厚度的部位(隧洞口)标定,确定适合隧道二衬混凝土的相对介电常数值。
4.3 资料的解释原则⑴二衬砌界面的判识在探地雷达图像的上部,一般振幅较强,同轴同相比较连续的第一组波形为衬砌界面反射信号。
界面判识后输入正常的介电常数值,即可由计算机自动计算出衬砌厚度值,厚度的计算公式为。
⑵钢拱架位置及判识在地质雷达图像中,电磁波遇到钢筋时产生极强的反射,反射波的位置为钢筋距测试面的距离(背水面保护层厚度);通过滤波处理,确定各里程段钢筋拱架分布情况及背水面保护层厚度。
⑶衬砌混凝土缺陷及位置判识由于衬砌混凝土与空气的相对介电常数的差异较大,所以探地雷达图像中表现为振幅较强的界面反射信号(多次波),所以空洞的明显特征就是有强烈的多次反射,波从相对介电常数大的物质(C20混凝土为8左右)进入相对介电常数小的物质(空气为1)中时,根据波动原理,在上界面处会先叠加为负波,可在雷达图像中准确拾取界面反射的双程旅时,根据公式求得缺陷的位置;衬砌不密实可能是由于混凝土离析振捣造成的,从波形特征与空洞的反射相似,但反射很弱;混凝土中有钢筋时也会产生反射,波从相对介电常数小的物质(C20混凝土为8左右)进入相对介电常数大的物质(钢筋为∞)中时,根据波动原理,在上界面处会先叠加为正波。
对于复合衬砌隧道,当第一次衬砌与第二次衬砌之间存在空隙时,界面上读取的厚度值为隧道的二次衬砌厚度,若二者密贴良好,则为一、二次衬砌合值;对于非复合衬砌隧道,该界面上读取的厚度值即为隧道的衬砌厚度值。
5. 雷达探查的典型图象1.衬砌界线混凝土衬砌、喷射混凝土与围岩(或其间空区中的空气)有明显的介电常数差,因此在时间剖面图上,衬砌底面和岩石之间有明显的界线。
雷达发射的直达波延续4个周期以上,0~12ns左右的目标物的反射波均与它相叠。
雷达的直达波呈现几条平直的水平同相轴的图像,而围岩开挖总有或大或小的不平,故衬砌底界,即它与围岩的分界面的反射波同相轴一般为有起伏的非直线图像,这是很易辨认的。
喷射混凝土与模筑衬砌介电常数有差别,但不是很大,它们之间若接触很好或粘结,则可能没有明显的反射波或仅有微弱的反射波。
如果喷射混凝土中有钢质拱架和钢筋网,则由于它们可强烈地反射雷达波,故可看到连续的绵延的反射图像。
图6 某隧道雷达剖面图图6中由于混凝土与围岩的介电常数差异明显我们能很好的分辨不同介质的分界面。
2.拱架与钢筋网在地质雷达图像中,电磁波遇到钢筋时产生极强的反射,反射波的位置为钢筋距测试面的距离(背水面保护层厚度);通过滤波处理,确定各里程段钢筋拱架分布情况及背水面保护层厚度。
图7 混凝土中布置的钢筋网图7中由于钢筋的界电常数为∞,图中可见连续的小双曲线反射,这是钢筋网的代表性反射图。
图8 典型的格栅钢架反射图8中两标距之间为10米,每10米的钢架为9榀达到了设计要求。
3. 衬砌混凝土缺陷混凝土内部缺陷包括欠密实、脱空等现象,欠密实其表现为波形杂乱且不连续的反射波形。