TDA2030与4558组成的音箱电路及维修
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
TDA2030电路JRC4558电路工作原理,如图纸所示:主要分为三部分。
分别为电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UT C2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
TDA2030AT是美国国家半导体公司九十年代初推出的一款音频功放电集成电路和LM3886互相代替。
TDA2030AT是美国国家半导体公司九十年代初推出的一款音频功放电集成电路,采用TO-220封装,外围元件少,但是性能优异,具有频率响应宽和速度快等特点,从九十年代初一直到现在还被广大音响爱好者推荐。
最可贵的是其价格已从当初的十几元降至现在的八九元,最适合于不想花太多的钱又想过过发烧隐的爱好者业余制作。
该IC最的优点是在小功率输出时的音质能直逼中高档音响的听音效果,在标准工作电压下能获得30W的平均功率,这在一般家用情况下已经足够,笔者曾用NE5532前级音调电路推动该集成功放,正如各类电子报刊评价那样获得极佳的效果,遗憾的是这样性格高的集成电路却很少见于市售的功放和多媒体有源音箱中,虽然其外表是如何的赏心悦目和精致漂亮,但是打开外壳,却很难发现它的芳影,而是生产厂家为了节省那几元钱的成本,大都采用诸如2030或其它名不见经传的廉价电路,由于和TDA2030的封装完全一样,可以直接的代替它,可以获得立竿见影的效果,但是必须是正品。
以下是应用电原理图,只画出一个声道,以下均只画出一个声道,另一声道原理相同。
在以往电子报刊中常介绍给功放集成电路取消负反馈电容,再加上一个由运算放大器构成的直流伺服电路,使其变成一个纯直流功放电路,事实对TDA2030A,还有LM3886等,根本不需多此一举,直接取消该电容即可,用数字万用表实际测量输出端,发现它的零点偏移很少,只有几毫伏左右,本人用这样的电路多年还没有烧坏集成块和扬声器的事件发生,况且该集成电路具有过热过流短路保护功能,该电路中取消了负反馈电路中下面的负反馈电容,变成了纯直流放大电路,大大地拓宽了频率响应,事实证明,只要前级音频输入电容选好,一般用CBB1U,或者用别的发烧品牌如WIMA,等,后级电位就很稳定,不能用一般的电解电容,因为那样有可能有小电流通过,通过放大后造成后级的不稳定,你可以通过对比试听出取消前后的音质绝然不同的效果,特别是高频和低音的拓宽,该电路取消了一般采用运放做伺服电路,使制作变得容易。
我知道一些:C4,C5是电源滤波电容C3是输出端高频旁路电容 (R6我估计是保护电阻,防止电流过大,对么?c6、c7是隔直电容c1,c2的作用我不是很明确但是c2在里面的作用应该很重要,有无对电路的影响很明显,我估计它与R5,R4一起组成负反馈电路,并起隔直作用,不懂对不对R1与R2两个等电阻刚好可以取到电源的中点电位,再由R3取得偏置电压加给端口1希望大家帮我看看,哪里有误,谢谢大家了问题补充:我在实际应用中发现,把R3去掉,也就是将其短接。
可以获得比原来好很多的音质,这是为什么呢?(我原先没想到要去掉R3的,而是把R3换成了一个可调电阻,当调到0时发现音质好了很多R4的话,调整后发现4K左右是比较合理的我电源用的是4x1.3=5.2v左右音质和一般的音箱听起来区别不太,还算过得去了电路简单我做这个电路好多遍了,有人说2030音质差,其实他根本不会做,现在很多中低档音响都用2030做功放,音质好又便宜。
如果看不清这个电路就去网上查看一下,很多很多各式各样的电路。
但是初学者建议你做最基本的电路。
2030是双电源供电,所以你要准备双12V变压器。
其实这个电路不难,但是要理解她内部结构就难了。
刚做电路时就一五一十的按图去做,不要删减元器件,不要更改参数。
但是就算你照着做也可能达不到理想的效果。
我刚做2030时也对她失望,简直没法听,全是杂音。
后来自己乱加元器件才发现一个关键点---电源滤波,如果只用一个2个2000uf的电容滤波的话是不行的因为输入的电压除了大电流波动(也就是50HZ的正向波动)还有高频干扰,所以还需要用0.1uf电容滤波。
别小看这小电容,没了它还真就不行。
好了,说再多也没用,赶紧去买元器件,自己做一个音响。
等你自己做成功了就自然会知道原理的。
一个2030不会超过2元。
祝你成功!。
工作原理,如图纸所示:主要分为三部分。
分别为电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300 UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16 V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300 UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C 23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
TDA2030单声道功放电路
一、电路说明
本电路是以集成电路TDA2030为中心组成的功率放大器,具有失真小、外围元件少、装配简单、功率大、保真度高等特点,很适合无线电爱好者和音响发烧友自制,学生组装。
电路中D1、D2为保护二极管,C5为滤波电容,C6为高频退耦电容;RP为音量调节电位器;IC是功放集成电路;R1、R2、R3、C2为功放IC输入端的偏置电路,由于本电路为单电源供电,功放IC输入端直流电压为1/2电源电压时电路才能正常工作;R4、R5、C3构成负反馈回路,改变R4的大小可以改变反馈系数。
C1是输入耦合电容,C4是输出耦合电容;在电路接有感性负载扬声器时,R6、C7可确保高频稳定性。
二、性能参数
输入电压:DC≤24V(本电路无整流,必须采用直流供电,推荐电压12V)
输出功率:Po=15W (RL=4Ω)
输出阻抗:4—8 Ω
三、元件清单位号
名称
规格
数量
R1、R2、R3、R5 电阻
100k
4
R4
电阻
4.7k
1
R6
电阻22
1
RP
电位器2k
1
C1
电解电容4.7uF
1
C2、C3 电解电容47uF
2
C4、C5 电解电容1000uF
C6、C7 独石电容104
2
D1、D2 二极管1N4007 2
X1
排针
2针
1
X2、X3 接线座
2位
2
IC
集成电路TDA2030
1
散热片含螺丁30*24*30mm 1
PCB板
55X50mm
1。
TDA2030A BT大功率功放低音炮电路图此功放是以集成电路TDA2030为中心组成的功率放大器,具有失真小、外围元件少、装配简单、功率大、保真度高等特点,很适合无线电爱好者和音响发烧友自制!套件采用4个TDA2030A组成双通道的BTL电路。
套件所用的电阻为金属膜电阻,小电解电容使用22UF,两个大滤波电容为4700UF/25V(实测耐压可达40v左右)小体积电解电容,其它电容采用金属化CBB无极性电容。
电路板设计精良,噪音小,美观大方,一推出就得到广大网友的喜爱。
既然是DIY 产品,就存在升级的地方,比如说将TDA2030A代换成1875表现可能会更出众。
之所以本站没有选用1875的原因是它的成本太高啦!“不惜成本,只求效果”的烧友可以将本板继续DIY一套音响成百上千是很正常的事!TDA2030A是目前性价比最高的功放集成块之一,内部有完善的过载及过热保护,是入门级功放制作的绝佳选择。
TDA2030A的工作电压范围较广,从±6~±22V都可以正常工作。
今天就让我们用TDA2030A来做一款BTL功放。
BTL电路的特点就是在相同的供电电压下,可以得到较普通功放两倍以上的输出功率(这一点音响爱好者都是知道的)。
下图为TDA2030A BTL功放的电路图,在±16V供电的时候可输出34W的功率,想获得更大的输出功率可提高供电电压,但最高不可超过±22V。
TDA2030A BTL电路套件实物图及原理图和电源电路:其中的一个通道,立体声只需做两个同样的电路就可以了。
制作过程:只要跟着一步一步将所需元件装上去,保管一装就OK,无需任何的调试。
先安装电阻和跳线,电阻全部为金属膜电阻。
接着是四个22U/25V和两个10U/50V的电容,电容为电解电容。
还有四个0.1U 以及两个1U的汤姆逊金属化CBB无极性电容。
虽然这些电容较普通电容贵上不少,但高品质的电容换来的是稳定的性能以及较高的信噪比,声音更加圆润顺耳,到主角TDA2030A上场了,一共用了四个TDA2030A,每两个组成一个通道的BTL电路。
功放集成电路TDA2030详解音频功放电路TDA2030,采用5 脚单列直插式塑料封装结构,如图所示,按引脚的形状引可分为H型和V型。
该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、谐波失真和交越失真小等特点。
并设有短路和过热保护电路等,多用于高级收录机及高传真立体声扩音装置。
意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。
电路特点:[1].外接元件非常少。
[2].输出功率大,Po=18W(RL=4Ω)。
[3].采用超小型封装(TO-220),可提高组装密度。
[4].开机冲击极小。
[5].内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路、过热、地线偶然开路、电源极性反接(Vsmax=12V)、负载泄放电压反冲等。
极限参数:如表1所示。
表1 TDA2003极限参数(TA=25 ℃)参数名称符号参数值单位电源电压Vcc ±18V输入电压Vt ±18V差分输入电压Vi ±15V3.5 A输出峰值电流IO功耗PD 20 W结温Ti -40~+150 ℃工作环境温度Topt -30~+75 ℃贮存温度Tstg -40~+150 ℃封装形式:TDA2030为5脚单列直插式,如上图1所示电气参数:如表2所示表2:TDA2030电气参数(Vcc=±14V,TA=25℃)典型应用电路:各元器件的作用:元器件推荐值作用比推荐值大时对电路的影响比推荐值小时对电路的影响R1 150K 闭环增益设置增大增益减小增益R2 4.7K 闭环增益设减小增益增大增益R3 100K 同相输入偏置增大输入阻抗减小输入阻抗R4 1Ω移相,稳定频率感性负载有振荡危险R5、R6 均100K 同相输入端偏置电源消耗增大C1 1u 输入隔直提高低频截至频率C2 22u 反相隔直提高低频截至频率C5 100u 低频退耦有振荡的危险C3 100n 高频退耦有振荡的危险C6 2200u 输出隔直提高低频截至频率C7 220n 移相、稳定频率有振荡的危险D1、D2 输出电压正负限幅保护注意事项:TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。
TDA2030单声道功放电路
一、电路说明
本电路是以集成电路TDA2030为中心组成的功率放大器,具有失真小、外围元件少、装配简单、功率大、保真度高等特点,很适合无线电爱好者和音响发烧友自制,学生组装。
电路中D1、D2为保护二极管,C5为滤波电容,C6为高频退耦电容;RP为音量调节电位器;IC是功放集成电路;R1、R2、R3、C2为功放IC输入端的偏置电路,由于本电路为单电源供电,功放IC输入端直流电压为1/2电源电压时电路才能正常工作;R4、R5、C3构成负反馈回路,改变R4的大小可以改变反馈系数。
C1是输入耦合电容,C4是输出耦合电容;在电路接有感性负载扬声器时,R6、C7可确保高频稳定性。
二、性能参数
输入电压:DC≤24V(本电路无整流,必须采用直流供电,推荐电压12V)
输出功率:Po=15W (RL=4Ω)
输出阻抗:4—8 Ω
三、元件清单
四、电路图
(转自中国电子制作网站)。
TDA2030与4558组成的音箱电路及维修作者:admin 来源:互联网TDA2030与4558组成的音箱电路及维修一、功放电路图4558D是一片常见的运算放大电路,为8脚双列直插式封装,常用于普及型台式CD、vCD中的话筒放大电路以及DAC(数/模转换)之后的运算放大输出级。
在该前置级运算放大电路中(图2),4558D接成了双电源工作电路,其中⑧脚接副电源的正电压vcc’,④脚接副电源端的负端vss’,为该片电路提供工作电源。
左、右声道信号由接口J输入,先分别经过R43、R42后至音量电位器w,同轴调节后的信号分别由c28、c29耦合至前置级运放Ic4的5、3脚,经内部电路放大处理后由⑥⑦与①②脚输出。
使用该片运放Ic不仅是为微弱的输入信号提供放大.主要还是起平衡调节的作用。
因为多媒体音箱不仅仅只是为接驳电脑使用,同样地可以接驳其他的影音器材。
如我们平常使用的磁带、CD随声听等,而该类器材一般又只能接驳在耳机输出端口。
我们知道,该端口是功率放大后的输出端口,若此时直接接入功放级的话,会产生严重的失真。
于是该音箱中使用了运放Ic,先由R43、R4 2对输入信号进行取样,由音量电位器(w)控制好音量后,再分别由C28、C29耦合到Ic4的⑤③脚对取样过来的信号进行放大处理。
由⑥⑦与①②脚输出前置放大级放大后的左、右声道信号,经R、C网络后输入到功率放大级IC2、ICl的①脚,进行功率放大。
其中c39、c40与w’相连电路为高音调节电路,其实该电路并非能将高音频域进行提升,而是根据电容通高频的原理,将高频声音信号提取到可变电阻w’,此时调节w’,等于将高频成分不同程度的对地短路,从而模拟高音调节功能。
另外,前置放大级输出端⑥⑦与①②脚分别接R41、R40(该两电阻参数一致)合成L、R信号后至重低音(Bass)调节电位器,经调节大小后输入至Ic5的⑤脚(见图3)。
Ic5同样由双电源供电,即⑧脚接Vcc’、④脚接vss’。
TDA2030优质扩音机功放电路一、集成电路简介TDA2030是应用普及的集成功率放大器,其频率响应为10-14000Hz,适用于高保真立体声扩音机及收录机中作音频功率放大器。
输出功率P=14W(VCC=±14V,R1=4Ω,谐波失真=0.5%时),若用两块TDA2030接成BTL放大器,其输出功率P=28W。
该集成块的输出电流峰值最大可达3.5A,其内部电路包括输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。
TDA2030的使用很方便,只须在其外部接入少量元器件。
二、功率放大电路下图是功放电路原理图。
图中RP是音量电位器.C1是输入耦合电容,Rl是TDA2030同相输入端偏置电阻。
R2、R3决定了该电路交流负反馈的强、弱及闭环增益,该电路的闭环增益为(R2+R3)/R2=(0.68+22)/0.68=333倍。
C2起隔直流作用,以使电路有100%直流负反馈,静态工作点稳定性较好。
C4、C5为电流高频旁路电容,防止电路产生自激振荡;R4、C3为一茹贝尔网络,用以在电路接有感性负载扬声器时,保证高频稳定性;D1,D2是保护二极管,防止输出电压峰值损坏集成块TDA20300。
三、供电电源电路下图为±12V输出的直流稳压电源。
电路中使用目前常见的三端稳压器7812和7912.构成具有±12V输出的直流稳压电源。
变压器T 降压,初级接交流220V,次级绕组中间有抽头,为双15V输出。
二极管D1-D4和电容Cl、C2组成桥式整流电容滤波电路,在C1、C2两端有18V左右不稳定的直流电压,经三端集成稳压器稳压,在7812输出端有+12V的稳定直流电压,在7912集成稳压器的输出端有-12V 的稳压直流电压。
该电路可用作集成运算放大器电路、OCL功率放大电路的电源。
四、元器件选择功放电路中C1、C2为电解电容器,耐压为16V:C3、C4、C5为瓷片电容;D1、D2为1N4001小功率整流二极管;B为4Ω8Ω、15W 全频扬声器;R1、R2、R3、R4为一般1/4或1/8W碳膜电阻即可。
TDA2030A BT大功率功放低音炮电路图此功放是以集成电路TDA2030为中心组成的功率放大器,具有失真小、外围元件少、装配简单、功率大、保真度高等特点,很适合无线电爱好者和音响发烧友自制!套件采用4个TDA2030A组成双通道的BTL电路。
套件所用的电阻为金属膜电阻,小电解电容使用22UF,两个大滤波电容为4700UF/25V(实测耐压可达40v左右)小体积电解电容,其它电容采用金属化CBB无极性电容。
电路板设计精良,噪音小,美观大方,一推出就得到广大网友的喜爱。
既然是DIY 产品,就存在升级的地方,比如说将TDA2030A代换成1875表现可能会更出众。
之所以本站没有选用1875的原因是它的成本太高啦!“不惜成本,只求效果”的烧友可以将本板继续DIY一套音响成百上千是很正常的事!TDA2030A是目前性价比最高的功放集成块之一,内部有完善的过载及过热保护,是入门级功放制作的绝佳选择。
TDA2030A的工作电压范围较广,从±6~±22V都可以正常工作。
今天就让我们用TDA2030A来做一款BTL功放。
BTL电路的特点就是在相同的供电电压下,可以得到较普通功放两倍以上的输出功率(这一点音响爱好者都是知道的)。
下图为TDA2030A BTL功放的电路图,在±16V供电的时候可输出34W的功率,想获得更大的输出功率可提高供电电压,但最高不可超过±22V。
TDA2030A BTL电路套件实物图及原理图和电源电路:其中的一个通道,立体声只需做两个同样的电路就可以了。
制作过程:只要跟着一步一步将所需元件装上去,保管一装就OK,无需任何的调试。
先安装电阻和跳线,电阻全部为金属膜电阻。
接着是四个22U/25V和两个10U/50V的电容,电容为电解电容。
还有四个0.1U 以及两个1U的汤姆逊金属化CBB无极性电容。
虽然这些电容较普通电容贵上不少,但高品质的电容换来的是稳定的性能以及较高的信噪比,声音更加圆润顺耳,到主角TDA2030A上场了,一共用了四个TDA2030A,每两个组成一个通道的BTL电路。
通用2.1声道有源音箱电路图分析及维修方法(转)工作原理,如图纸所示:主要分为三部分。
分别为电源电路、卫星箱功放电路、超重低音电路.一、电源电路(图纸的最下面部分):220V市电经过保险管(F),和开关S后进入变压器初级,变压器的次级输出双12V交流,双12V送入由VD1组成的桥式整流电路电路,经过桥式整流和C14,C15(3300UF/25V)的滤波后,输出的空载电压约为正负16V左右(根号2乘于12V),即A+为正16V,A-为负16V。
正负16V为三块功放芯片TDA2030,UTC2030提供电源。
另一路经过R21、R22的降压后,由B+,B-输出约正负12V为低音前置放大和低通滤波器IC4提供电源电压。
在本图纸当中,前置放大的供电并没有采用78/7912三端稳压电路,磨机爱好者在更换两个3300UF电容时,也可以考虑加入LM7812/7912为前置提供更为稳定的工作电压。
二、左右声道放大电路(卫星箱功放电路),因左右声道作原理完全一致。
这里我只以图纸的左声道为例,作个介绍。
如图:RIN为信号输入端,经过耦合电容C23进入音量电位器,(音量电位器由三个引脚,与C23连接的是输入端,输出端也叫滑动端、另一引脚为接地端),调整音量后信号进入由R1/C3组成的高音提升电路,此电路可以提升一定量的高频信号,使声音更加清晰。
尔后信号经过耦合电容C1进入左声道功放,型号为UTC2030的1脚,经过功率放大后,由2030的第四脚输出,推动卫星箱发声。
图中的R7为反馈电阻,R7/R9为决定2030芯片的放大倍数。
因此,调整R 7的阻值,就可以调整放大倍数。
R11/C7为扬声器补偿网络。
三、超低音电路。
由左右声道经两个10K电阻R5、R6后至C11耦合电容,尔后信号进入IC4,型号为JRC4558的3脚,图中IC4A为超低音的前置放大器。
R201T将此放大器的放大倍数设置为6倍左右。
(R17/R18),经过前置放大后,才能保证足够大的驱动电压,获得足够大的音量。
TDA2030功放典型电路TDA2030音频功放电路,采用V型5 脚单列直插式塑料封装结构。
如图1所示,按引脚的形状引可分为H型和V 型。
该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。
并具有内部保护电路。
意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。
电路特点:[1].外接元件非常少。
?[2].输出功率大,Po=18W(RL=4Ω)。
[3].采用超小型封装(TO-220),可提高组装密度。
[4].开机冲击极小。
[5].内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。
???注意事项:?TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。
?热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。
?与普通电路相比较,散热片可以有更小的安全系数。
万一结温超过时,也不会对器件有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io就被减少。
?印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。
?装配时散热片与之间不需要绝缘,引线长度应尽可能短,焊接温度不得超过260℃,12秒。
虽然TDA2030所需的元件很少,但所选的元件必须是品质有保障的元件。
相关文章:一款性能极佳的JFET-MOSFET耳机功放由LM1875组成的80WBTL功放用LM1875X2和NE5532X2制作的HIFI功放电路傻瓜系列功放内部电路图TDA1521典型接线图外围元件最少的2×15W功放电路。
TDA2030与4558组成的音箱电路及维修一、功放电路图4558D是一片常见的运算放大电路,为8脚双列直插式封装,常用于普及型台式CD、vCD中的话筒放大电路以及DAC(数/模转换)之后的运算放大输出级。
在该前置级运算放大电路中(图2),4558D接成了双电源工作电路,其中⑧脚接副电源的正电压vcc’,④脚接副电源端的负端vss’,为该片电路提供工作电源。
左、右声道信号由接口J输入,先分别经过R43、R42后至音量电位器w,同轴调节后的信号分别由c28、c29耦合至前置级运放Ic4的5、3脚,经内部电路放大处理后由⑥⑦与①②脚输出。
使用该片运放Ic不仅是为微弱的输入信号提供放大.主要还是起平衡调节的作用。
因为多媒体音箱不仅仅只是为接驳电脑使用,同样地可以接驳其他的影音器材。
如我们平常使用的磁带、CD随声听等,而该类器材一般又只能接驳在耳机输出端口。
我们知道,该端口是功率放大后的输出端口,若此时直接接入功放级的话,会产生严重的失真。
于是该音箱中使用了运放Ic,先由R43、R42对输入信号进行取样,由音量电位器(w)控制好音量后,再分别由C28、C29耦合到Ic4的⑤③脚对取样过来的信号进行放大处理。
由⑥⑦与①②脚输出前置放大级放大后的左、右声道信号,经R、C网络后输入到功率放大级IC2、ICl的①脚,进行功率放大。
其中c39、c40与w’相连电路为高音调节电路,其实该电路并非能将高音频域进行提升,而是根据电容通高频的原理,将高频声音信号提取到可变电阻w’,此时调节w’,等于将高频成分不同程度的对地短路,从而模拟高音调节功能。
另外,前置放大级输出端⑥⑦与①②脚分别接R41、R40(该两电阻参数一致)合成L、R 信号后至重低音(Bass)调节电位器,经调节大小后输入至Ic5的⑤脚(见图3)。
Ic5同样由双电源供电,即⑧脚接Vcc’、④脚接vss’。
与Ic4不同的是,Ic5相当于BTL形式的接法,将低音成分更大程度的放大后输入到“低音炮”功放级IC3的①脚,并且耦合到Ic3①脚时采用了大容量的电解电容,而不像左、右声道Ic2、Icl的①脚输入端的无极性小容量电容,进一步地保证了低频信号的“畅通无阻”。
1.LM386功放此电路电源范围为+4伏---+12伏(也可以用电脑USB供电),扬声器为8欧/3瓦。
若做两个声道的话只需制作两个电路图即可。
电路图参数表注:此电路封装为自己画的。
PCB图2.TDA2030功放此电路为OTL音频功率放大器,电源电压为正22伏。
扬声器为8欧/14W.(1):TDA2030介绍(2):原理图(3):PCB图(4):TDA2030电源(5):对元器件性能要求C1:输入隔直电容器要求漏电流要小,如果漏偏大时就会使输出电压的静态工作点偏移,导致大信号时产生削波失真,甚至可能电路工作不正常。
一般选用铝电解电容器,其最大特征就是漏电流小。
C2:反馈网络的隔直电容器。
C8:输出端隔直电容器要求有足够的电容量,以保证输出地低频响应特性。
C3,C5:电源旁路电容器,防止功率放大器电路通过电源阻抗的不良反馈而导致自激振荡现象,对电源的交流阻抗,只能采用电源旁路电容器来降低。
(6):变压器的选择变压器选交流220伏输入,输出19伏,50瓦(7):滤波电容的选择C=(1500--2000)*负载输出电流这里滤波电容为3300uF/50V元件符号元器件名称元器件参数C1铝电解电容1uF/25VC2铝电解电容 2.2uF/25VC3薄膜电容器0.1uF/100VC4铝电解电容22uF/25VC5铝电解电容220uF/50VC7薄膜电容器0.1uF/100VC8铝电解电容2200uF/25VVD1二极管1N4007VD2二极管1N4007U1集成功率放大器TDA2030R1电阻100K/0.125WR2电阻100K/0.125WR3电阻100K/0.125WR4电阻 4.7K/0.125WR5电阻150K/0.125WR6电阻1欧/1瓦LS1扬声器8欧/14瓦。
TDA2030功放电路本文介绍的音频功率放大器是用集成功放TDA2030为主的电路,其制作简单,价格低廉,输出功率大,保真性好,适合初学者和大、中专学生。
一、电路工作原理图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。
其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。
TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。
RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。
R2、R3决定了该电路交流负反馈的强弱及闭环增益。
该电路闭环增益为(R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。
静态工作点稳定性好。
C4、C5为电源高频旁路电容,防止电路产生自激振荡。
R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。
VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。
二、元器件的选择集成功率放大器TDA2030。
RP为碳膜电位器。
C1、C2为电解电容器,耐压为16V,C3、C4、C5为瓷介电容。
R1、R2、R3为碳膜电阻,额定功率为1/8W。
R4为碳膜电阻,额定功率为1/4W。
VD1、VD2为IN4007小功率整流二极管。
B为4Ω或8Ω、15W全频扬声器。
三、电路制作图2是本电路印制电路板图及TDA2030管脚图。
由于TDA2030输出功率较大,因此需加散热器。
而TDA2030的负电源引脚(3脚)与散热器相连,所以在装散热器时,要注意散热器不能与其他元器件相接触。
TDA2030与4558组成的音箱电路及维修作者:admin 来源:互联网TDA2030与4558组成的音箱电路及维修一、功放电路图4558D是一片常见的运算放大电路,为8脚双列直插式封装,常用于普及型台式CD、vCD中的话筒放大电路以及DAC(数/模转换)之后的运算放大输出级。
在该前置级运算放大电路中(图2),4558D接成了双电源工作电路,其中⑧脚接副电源的正电压vcc’,④脚接副电源端的负端vss’,为该片电路提供工作电源。
左、右声道信号由接口J输入,先分别经过R43、R42后至音量电位器w,同轴调节后的信号分别由c28、c29耦合至前置级运放Ic4的5、3脚,经内部电路放大处理后由⑥⑦与①②脚输出。
使用该片运放Ic不仅是为微弱的输入信号提供放大.主要还是起平衡调节的作用。
因为多媒体音箱不仅仅只是为接驳电脑使用,同样地可以接驳其他的影音器材。
如我们平常使用的磁带、CD随声听等,而该类器材一般又只能接驳在耳机输出端口。
我们知道,该端口是功率放大后的输出端口,若此时直接接入功放级的话,会产生严重的失真。
于是该音箱中使用了运放Ic,先由R43、R4 2对输入信号进行取样,由音量电位器(w)控制好音量后,再分别由C28、C29耦合到Ic4的⑤③脚对取样过来的信号进行放大处理。
由⑥⑦与①②脚输出前置放大级放大后的左、右声道信号,经R、C网络后输入到功率放大级IC2、ICl的①脚,进行功率放大。
其中c39、c40与w’相连电路为高音调节电路,其实该电路并非能将高音频域进行提升,而是根据电容通高频的原理,将高频声音信号提取到可变电阻w’,此时调节w’,等于将高频成分不同程度的对地短路,从而模拟高音调节功能。
另外,前置放大级输出端⑥⑦与①②脚分别接R41、R40(该两电阻参数一致)合成L、R信号后至重低音(Bass)调节电位器,经调节大小后输入至Ic5的⑤脚(见图3)。
Ic5同样由双电源供电,即⑧脚接Vcc’、④脚接vss’。
一、功放电路图
4558D是一片常见的运算放大电路,为8脚双列直插式封装,常用于普及型台式CD、vCD中的话筒放大电路以及DAC(数/模转换)之后的运算放大输出级。
在该前置级运算放大电路中(图2),4558D接成了双电源工作电路,其中⑧脚接副电源的正电压vcc’,④脚接副电源端的负端vss’,为该片电路提供工作电源。
左、右声道信号由接口J输入,先分别经过R43、R42后至音量电位器w,同轴调节后的信号分别由c28、c29耦合至前置级运放Ic4的5、3脚,经内部电路放大处理后由⑥⑦与①②脚输出。
使用该片运放Ic不仅是为微弱的输入信号提供放大.主要还是起平衡调节的作用。
因为多媒体音箱不仅仅只是为接驳电脑使用,同样地可以接驳其他的影音器材。
如我们平常使用的磁带、CD 随声听等,而该类器材一般又只能接驳在耳机输出端口。
我们知道,该端口是功率放大后的输出端口,若此时直接接入功放级的话,会产生严重的失真。
于是该音箱中使用了运放Ic,先由R43、R42对输入信号进行取样,由音量电位器(w)控制好音量后,再分别由C28、C29耦合到Ic4的⑤③脚对取样过来的信号进行放大处理。
由⑥⑦与①②脚输出前置放大级放大后的左、右声道信号,经R、C网络后输入到功率放大级IC2、ICl的①脚,进行功率放大。
其中c39、c40与w’相连电路为高音调节电路,其实该电路并非能将高音频域进行提升,而是根据电容通高频的原理,将高频声音信号提取到可变电阻w’,此时调节w’,等于将高频成分不同程度的对地短路,从而模拟高音调节功能。
另外,前置放大级输出端⑥⑦与①②脚分别接R41、R40(该两电阻参数一致)合成L、R 信号后至重低音(Bass)调节电位器,经调节大小后输入至Ic5的⑤脚(见图3)。
Ic5同样由双电源供电,即⑧脚接Vcc’、④脚接vss’。
与Ic4不同的是,Ic5相当于BTL形式的接法,将低音成分更大程度的放大后输入到“低音炮”功放级IC3的①脚,并且耦合到Ic3①脚时采用了大容量的电解电容,而不像左、右声道Ic2、Icl的①脚输入端的无极性小容量电容,进一步地保证了低频信号的“畅通无阻”。
TDA2030A是一片常见的单声道高保真功率放大集成电路,除了在音质方面具有很好的表现之外,其外围电路比较简单,可以说是傻瓜型了。
在该电路中,ICl~IC3均接成了OCL的形式,对应各引脚功能如下:①放大输入端、②反馈端、③负电源vss输入、④放大后输出端、⑤正电源端Vcc输入。
至此.由三片相同的功率放大电路,分别对左、右、低旨炮各声道推动。
还原出声音。
二、电源电路
如图1.市电经电源控制开关K连接到变压器的初级。
变压器次级的中心抽头直接接公共地极,两边引脚经D1~D4桥式整流后,正极相对公共地为正电源端.负极相对地为负电源端。
正电源端由C36滤波后输出Vcc,负电源由C37滤波后输出Vss。
经实测,该主电源为直流±15V,为三片功放Ic(ICl~IC3)提供工作电源。
另外,主电源vcc端经R22限流、D5稳压、C33滤波后输出副电源端Vcc’,主电源端Vss经R23限流、D6稳压、C17滤波后输出副电源vss’,为运放IC4、IC5提供±5V 的工作电源。
其中LED为工作状态指示灯。
三、检修实例
[例1]冷机工作正常,但若干秒后各声道均发出较大的“沙…”尖叫声,断电一段时间后又能正常工作,至若干秒后故障重现。
开箱检查。
并没发现什么物理异常现象。
考虑到三片放大IC或两片前置放大IC 同时出现热稳定性不良的可能性不大,看来故障主要还是在公共的电源部分,试着将D1~
D4分别并上一只lN4007后故障排除。
[例2]一通电源各声道便发出尖叫声。
无法放音。
同样考虑到三片功放IC或两片前置放大IC同时损坏的可能性不大,故障应还是在电源部分。
先断开正、负电源输出端,测变压器次级输出~12V正常,分别检查D1~D4也正常,无短路击穿、断路等现象;继而测C36两端电压+15V正常,而测C37两端电压却在-10V~-15V之间摆动。
观察发现C37一引脚脱焊,焊牢后接回电源输入端试机,恢复正常。
很显然,当出现电源正、负不对称时,零点电位便产生漂移,且负电源端有较多的杂波串入,造成了该故障。
另外,分别在D1~D4两端也并上一只1N4007,以绝后患。
毕竟该类音箱的工作电路全密闭在低音炮箱里面.而对于功放IC、变压器等件发热量又较大,并且工作时问一般在几小时甚至十几小时以上,热量积聚在里面很难散出.所以在如此恶劣的使用情况下,故障的可能性是比较大的。
实例1的故障率达70%以上,为该类音箱的通病。