15-2第十五讲:有介质存在时磁场的规律,电介质典型例题,介质的击穿及接触起电
- 格式:ppt
- 大小:2.53 MB
- 文档页数:13
校内讲义电介质物理二〇〇六年十二月前言电介质是在电场作用下具有极化能力并能在其中长期存在电场的一种物质。
其特征是以正、负电荷重心不重合的电极化方式传递、存储或记录电的作用和影响,但其中其主要作用的是束缚电荷。
极化是电介质的基本属性,也是电介质多种实际应用(如储存静电能)的基础。
电介质物理学主要是研究界之内不束缚电荷在电场(包括光频电场)、应力、温度等作用下的电极化及运动过程,阐明电极化规律与介质结构的关系,揭示介质宏观介电性质的微观机制,同时也研究介电性质的测量方法,以及各种电介质的性能,进而发展电介质的效用。
电介质的物理形态可以是气体、液体或固体,自然界中分布极广,本讲义主要介绍固体电介质。
电介质与金属对电场的响应特性是不同的,金属中的电子是共有化的,金属内有自由载流子,使金属具有良好的导电性,它们以传导的方式来传递电的作用和影响。
在电介质体内,一般情况下只具有被束缚的电荷,在电场的作用下只能以感应的方式,即电极化(在电场作用下正、负电荷中心不重合)的方式来传递和记录电的影响。
尽管对不同种类的电介质,电极化的机制各不相同,但是以电极化方式响应电场的作用却是共同的。
因此,研究电介质在电场作用下发生极化的物理过程并推导出相应的规律,是电介质物理的重要课题之一。
由于实际电介质与理想电介质不同,在电场作用下,实际电介质存在泄漏电流和电能的耗散以及在强电场下可能导致的电介质破坏,因此,电介质物理除了研究极化外,还要研究有关电介质的电导、损耗、以及击穿特性。
这些就是经典的电介质物理研究的主要内容。
20世纪20年代,关于原子结构和分子结构的研究开始发展的时候,电极化基本过程的研究也发展起来,它从物理学分离出来并成为一个独立分支。
目前备受关注的课题包括:(1)材料性质的第一性原理计算;(2)驰豫铁电体;(3)非均匀介质;(4)有限尺寸材料;(5)电解质的驰豫特性研究;(6)微波介质和低介电常数材料电介质物理学始于物质结构研究密不可分的基础学科,研究的中心问题试电极化与驰豫,故涉及物质结构中束缚电荷的分布、带电粒子间的相互作用,以及这些粒子在外电场作用下的运动和驰豫等。